No Arabic abstract
In many situations (e.g., distant supervision), unlabeled entity problem seriously degrades the performances of named entity recognition (NER) models. Recently, this issue has been well addressed by a notable approach based on negative sampling. In this work, we perform two studies along this direction. Firstly, we analyze why negative sampling succeeds both theoretically and empirically. Based on the observation that named entities are highly sparse in datasets, we show a theoretical guarantee that, for a long sentence, the probability of containing no unlabeled entities in sampled negatives is high. Missampling tests on synthetic datasets have verified our guarantee in practice. Secondly, to mine hard negatives and further reduce missampling rates, we propose a weighted and adaptive sampling distribution for negative sampling. Experiments on synthetic datasets and well-annotated datasets show that our method significantly improves negative sampling in robustness and effectiveness. We also have achieved new state-of-the-art results on real-world datasets.
In many scenarios, named entity recognition (NER) models severely suffer from unlabeled entity problem, where the entities of a sentence may not be fully annotated. Through empirical studies performed on synthetic datasets, we find two causes of performance degradation. One is the reduction of annotated entities and the other is treating unlabeled entities as negative instances. The first cause has less impact than the second one and can be mitigated by adopting pretraining language models. The second cause seriously misguides a model in training and greatly affects its performances. Based on the above observations, we propose a general approach, which can almost eliminate the misguidance brought by unlabeled entities. The key idea is to use negative sampling that, to a large extent, avoids training NER models with unlabeled entities. Experiments on synthetic datasets and real-world datasets show that our model is robust to unlabeled entity problem and surpasses prior baselines. On well-annotated datasets, our model is competitive with the state-of-the-art method.
This paper presents a novel framework, MGNER, for Multi-Grained Named Entity Recognition where multiple entities or entity mentions in a sentence could be non-overlapping or totally nested. Different from traditional approaches regarding NER as a sequential labeling task and annotate entities consecutively, MGNER detects and recognizes entities on multiple granularities: it is able to recognize named entities without explicitly assuming non-overlapping or totally nested structures. MGNER consists of a Detector that examines all possible word segments and a Classifier that categorizes entities. In addition, contextual information and a self-attention mechanism are utilized throughout the framework to improve the NER performance. Experimental results show that MGNER outperforms current state-of-the-art baselines up to 4.4% in terms of the F1 score among nested/non-overlapping NER tasks.
Named entity recognition (NER) models are typically based on the architecture of Bi-directional LSTM (BiLSTM). The constraints of sequential nature and the modeling of single input prevent the full utilization of global information from larger scope, not only in the entire sentence, but also in the entire document (dataset). In this paper, we address these two deficiencies and propose a model augmented with hierarchical contextualized representation: sentence-level representation and document-level representation. In sentence-level, we take different contributions of words in a single sentence into consideration to enhance the sentence representation learned from an independent BiLSTM via label embedding attention mechanism. In document-level, the key-value memory network is adopted to record the document-aware information for each unique word which is sensitive to similarity of context information. Our two-level hierarchical contextualized representations are fused with each input token embedding and corresponding hidden state of BiLSTM, respectively. The experimental results on three benchmark NER datasets (CoNLL-2003 and Ontonotes 5.0 English datasets, CoNLL-2002 Spanish dataset) show that we establish new state-of-the-art results.
Deep learning has yielded state-of-the-art performance on many natural language processing tasks including named entity recognition (NER). However, this typically requires large amounts of labeled data. In this work, we demonstrate that the amount of labeled training data can be drastically reduced when deep learning is combined with active learning. While active learning is sample-efficient, it can be computationally expensive since it requires iterative retraining. To speed this up, we introduce a lightweight architecture for NER, viz., the CNN-CNN-LSTM model consisting of convolutional character and word encoders and a long short term memory (LSTM) tag decoder. The model achieves nearly state-of-the-art performance on standard datasets for the task while being computationally much more efficient than best performing models. We carry out incremental active learning, during the training process, and are able to nearly match state-of-the-art performance with just 25% of the original training data.
It has been shown that named entity recognition (NER) could benefit from incorporating the long-distance structured information captured by dependency trees. We believe this is because both types of features - the contextual information captured by the linear sequences and the structured information captured by the dependency trees may complement each other. However, existing approaches largely focused on stacking the LSTM and graph neural networks such as graph convolutional networks (GCNs) for building improved NER models, where the exact interaction mechanism between the two types of features is not very clear, and the performance gain does not appear to be significant. In this work, we propose a simple and robust solution to incorporate both types of features with our Synergized-LSTM (Syn-LSTM), which clearly captures how the two types of features interact. We conduct extensive experiments on several standard datasets across four languages. The results demonstrate that the proposed model achieves better performance than previous approaches while requiring fewer parameters. Our further analysis demonstrates that our model can capture longer dependencies compared with strong baselines.