A case study of ACV variables discovered in the Zwicky Transient Facility survey


Abstract in English

Magnetic chemically peculiar (mCP) stars exhibit complex atmospheres that allow the investigation of the interplay of atomic diffusion, magnetic fields, and stellar rotation. A non-uniform surface distribution of chemical elements and the non-alignment of the rotational and magnetic axes result in the variability of several observables. Photometrically variable mCP stars are referred to as alpha2 Canum Venaticorum (ACV) variables. The present work presents a case study of known variables from the Zwicky Transient Facility (ZTF) survey, with the aim of investigating the surveys suitability for the detection and study of new ACV variables. Using suitable selection criteria based on the known characteristics of ACV variables, candidate ACV stars were selected from the ZTF Catalog of Periodic Variable Stars. All light curves were inspected in detail to select the most promising candidates. Where available, low-resolution spectra from the LAMOST were employed to classify the stars on the MK system and confirm their status as mCP stars. We have identified 86 new promising ACV star candidates. 15 of these stars have LAMOST spectra available, which, in all cases, confirm them as classical mCP stars, which highlights the viability of our approach. The sample stars can be sorted into four subgroups characterized by distinct light curve shapes. Anti-phase variations in different photometric passbands, in particular, is a unique characteristic of a subset of ACV stars readily usable for their identification. The availability of data in three different passbands (g, r, and i) is a major advantage of the ZTF survey. On the basis of our experience with other photometric surveys and the analysis of light curves, we conclude that the ZTF is well suited for the search for, and the analysis of, ACV variables, which, however, are not considered in the available ZTF variable star catalogues.

Download