Do you want to publish a course? Click here

Finite thermal particle creation of Casimir light

81   0   0.0 ( 0 )
 Added by Michael Good
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

A new solution for an analytic spectrum of particle creation by an accelerating mirror (dynamical Casimir effect) is given. It is the first model to simultaneously radiate thermally and emit a finite number of particles.



rate research

Read More

In this work we investigate the dynamical Casimir effect in a nonideal cavity by deriving an effective Hamiltonian. We first compute a general expression for the average number of particle creation, applicable for any law of motion of the cavity boundary. We also compute a general expression for the linear entropy of an arbitrary state prepared in a selected mode, also applicable for any law of motion of the cavity boundary. As an application of our results we have analyzed both the average number of particle creation and linear entropy within a particular oscillatory motion of the cavity boundary. On the basis of these expressions we develop a comprehensive analysis of the resonances in the number of particle creation in the nonideal dynamical Casimir effect. We also demonstrate the occurrence of resonances in the loss of purity of the initial state and estimate the decoherence times associated with these resonances.
64 - S.V. Akkelin 2020
Particle production by expanding in the future light cone scalar quantum field is studied by assuming that the initial state is associated with the quasiequilibrium statistical operator corresponding to fluid dynamics. We calculate particle production from a longitudinally boost-invariant expanding quantum field designed as a simple but reliable model for the central rapidity region of a relativistic collision. Exact diagonalization of the model is performed by introducing a notion of quasiparticles.
We analyse here the pseudo-Hermitian Dynamical Casimir effect, proposing a non-Hermitian version of the effective Laws Hamiltonian used to describe the phenomenon. We verify that the average number of created photons can be substantially increased, a result which calls the attention to the possibility of engineering the time-dependent non-Hermitian Hamiltonian we have assumed. Given the well-known difficulty in detecting the Casimir photon production, the present result reinforces the importance of pseudo-Hermitian quantum mechanics as a new chapter of quantum theory and an important tool for the amplification of Hermitian processes such as the degree of squeezing of quantum states.
Creation of thermal distribution of particles by a black hole is independent of the detail of gravitational collapse, making the construction of the eternal horizons suffice to address the problem in asymptotically flat spacetimes. For eternal de Sitter black holes however, earlier studies have shown the existence of both thermal and non-thermal particle creation, originating from the non-trivial causal structure of these spacetimes. Keeping this in mind we consider this problem in the context of a quasistationary gravitational collapse occurring in a $(3+1)$-dimensional eternal de Sitter, settling down to a Schwarzschild- or Kerr-de Sitter spacetime and consider a massless minimally coupled scalar field. There is a unique choice of physically meaningful `in vacuum here, defined with respect to the positive frequency cosmological Kruskal modes localised on the past cosmological horizon ${cal C^-}$, at the onset of the collapse. We define our `out vacuum at a fixed radial coordinate `close to the future cosmological horizon, ${cal C^+}$, with respect to positive frequency outgoing modes written in terms of the ordinary retarded null coordinate, $u$. We trace such modes back to ${cal C^-}$ along past directed null geodesics through the collapsing body. Some part of the wave will be reflected back without entering it due to the greybody effect. We show that these two kind of traced back modes yield the two temperature spectra and fluxes subject to the aforementioned `in vacuum. Since the coordinate $u$ used in the `out modes is not well defined on a horizon, estimate on how `close we might be to ${cal C^+}$ is given by estimating backreaction. We argue no other reasonable choice of the `out vacuum would give rise to any thermal spectra. Our conclusions remain valid for all non-Nariai class black holes, irrespective of the relative sizes of the two horizons.
159 - K. Lange , J. Peise , B. Lucke 2018
If the boundary conditions of the quantum vacuum are changed in time, quantum field theory predicts that real, observable particles can be created in the initially empty modes. Here, we realize this effect by changing the boundary conditions of a spinor Bose-Einstein condensate, which yields a population of initially unoccupied spatial and spin excitations. We prove that the excitations are created as entangled excitation pairs by certifying continuous-variable entanglement within the many-particle output state.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا