No Arabic abstract
Since the Time-Dependent Density Functional Theory is mathematically formulated through non-linear coupled time-dependent 3-dimensional partial differential equations it is natural to expect a strong sensitivity of its solutions to variations of the initial conditions, akin to the butterfly effect ubiquitous in classical dynamics. Since the Schrodinger equation for an interacting many-body system is however linear and (mathematically) the exact equations of the Density Functional Theory reproduce the corresponding one-body properties, it would follow that the Lyapunov exponents are also vanishing within a Density Functional Theory framework. Whether for realistic implementations of the Time-Dependent Density Functional Theory the question of absence of the butterfly effect and whether the dynamics provided is indeed a predictable theory was never discussed. At the same time, since the time-dependent density functional theory is a unique tool allowing us the study of non-equilibrium dynamics of strongly interacting many-fermion systems, the question of predictability of this theoretical framework is of paramount importance. Our analysis, for a number of quantum superfluid any-body systems (unitary Fermi gas, nuclear fission, and heavy-ion collisions) with a classical equivalent number of degrees of freedom ${cal O}(10^{10})$ and larger, suggests that its maximum Lyapunov are negligible for all practical purposes.
We consider biological evolution as described within the Bak and Sneppen 1993 model. We exhibit, at the self-organized critical state, a power-law sensitivity to the initial conditions, calculate the associated exponent, and relate it to the recently introduced nonextensive thermostatistics. The scenario which here emerges without tuning strongly reminds that of the tuned onset of chaos in say logistic-like onedimensional maps. We also calculate the dynamical exponent z.
The soliton existence in sub-atomic many-nucleon systems is discussed. In many nucleon dynamics represented by the nuclear time-dependent density functional formalism, much attention is paid to energy and mass dependence of the soliton existence. In conclusion, the existence of nuclear soliton is clarified if the temperature of nuclear system is from 10 to 30 MeV. With respect to the mass dependence $^{4}$He and $^{16}$O are suggested to be the candidates for the self-bound states exhibiting the property of nuclear soliton.
The short-time and long-time dynamics of the Bak-Sneppen model of biological evolution are investigated using the damage spreading technique. By defining a proper Hamming distance measure, we are able to make it exhibits an initial power-law growth which, for finite size systems, is followed by a decay towards equilibrium. In this sense, the dynamics of self-organized critical states is shown to be similar to the one observed at the usual critical point of continuous phase-transitions and at the onset of chaos of non-linear low-dimensional dynamical maps. The transient, pre-asymptotic and asymptotic exponential relaxation of the Hamming distance between two initially uncorrelated equilibrium configurations is also shown to be fitted within a single mathematical framework. A connection with nonextensive statistical mechanics is exhibited.
I show that the so-called causality paradox of time-dependent density functional theory arises from an incorrect formulation of the variational principle for the time evolution of the density. The correct formulation not only resolves the paradox in real time, but also leads to a new expression for the causal exchange-correlation kernel in terms of Berry curvature. Furthermore, I show that all the results that were previously derived from symmetries of the action functional remain valid in the present formulation. Finally, I develop a model functional theory which explicitly demonstrates the workings of the new formulation.
Finite temperature density functional theory provides, in principle, an exact description of the thermodynamical equilibrium of many-electron systems. In practical applications, however, the functionals must be approximated. Efficient and physically meaningful approximations can be developed if relevant properties of the exact functionals are known and taken into consideration as constraints. In this work, derivations of exact properties and scaling relations for the main quantities of finite temperature density functional theory are presented. In particular, a coordinate scaling transformation at finite temperature is introduced and its consequences are elucidated.