Do you want to publish a course? Click here

Adversarial Robustness of Deep Learning: Theory, Algorithms, and Applications

113   0   0.0 ( 0 )
 Added by Wenjie Ruan
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

This tutorial aims to introduce the fundamentals of adversarial robustness of deep learning, presenting a well-structured review of up-to-date techniques to assess the vulnerability of various types of deep learning models to adversarial examples. This tutorial will particularly highlight state-of-the-art techniques in adversarial attacks and robustness verification of deep neural networks (DNNs). We will also introduce some effective countermeasures to improve the robustness of deep learning models, with a particular focus on adversarial training. We aim to provide a comprehensive overall picture about this emerging direction and enable the community to be aware of the urgency and importance of designing robust deep learning models in safety-critical data analytical applications, ultimately enabling the end-users to trust deep learning classifiers. We will also summarize potential research directions concerning the adversarial robustness of deep learning, and its potential benefits to enable accountable and trustworthy deep learning-based data analytical systems and applications.



rate research

Read More

Deep Metric Learning (DML), a widely-used technique, involves learning a distance metric between pairs of samples. DML uses deep neural architectures to learn semantic embeddings of the input, where the distance between similar examples is small while dissimilar ones are far apart. Although the underlying neural networks produce good accuracy on naturally occurring samples, they are vulnerable to adversarially-perturbed samples that reduce performance. We take a first step towards training robust DML models and tackle the primary challenge of the metric losses being dependent on the samples in a mini-batch, unlike standard losses that only depend on the specific input-output pair. We analyze this dependence effect and contribute a robust optimization formulation. Using experiments on three commonly-used DML datasets, we demonstrate 5-76 fold increases in adversarial accuracy, and outperform an existing DML model that sought out to be robust.
Unsupervised domain adaptation is used in many machine learning applications where, during training, a model has access to unlabeled data in the target domain, and a related labeled dataset. In this paper, we introduce a novel and general domain-adversarial framework. Specifically, we derive a novel generalization bound for domain adaptation that exploits a new measure of discrepancy between distributions based on a variational characterization of f-divergences. It recovers the theoretical results from Ben-David et al. (2010a) as a special case and supports divergences used in practice. Based on this bound, we derive a new algorithmic framework that introduces a key correction in the original adversarial training method of Ganin et al. (2016). We show that many regularizers and ad-hoc objectives introduced over the last years in this framework are then not required to achieve performance comparable to (if not better than) state-of-the-art domain-adversarial methods. Experimental analysis conducted on real-world natural language and computer vision datasets show that our framework outperforms existing baselines, and obtains the best results for f-divergences that were not considered previously in domain-adversarial learning.
Driven by massive amounts of data and important advances in computational resources, new deep learning systems have achieved outstanding results in a large spectrum of applications. Nevertheless, our current theoretical understanding on the mathematical foundations of deep learning lags far behind its empirical success. Towards solving the vulnerability of neural networks, however, the field of adversarial robustness has recently become one of the main sources of explanations of our deep models. In this article, we provide an in-depth review of the field of adversarial robustness in deep learning, and give a self-contained introduction to its main notions. But, in contrast to the mainstream pessimistic perspective of adversarial robustness, we focus on the main positive aspects that it entails. We highlight the intuitive connection between adversarial examples and the geometry of deep neural networks, and eventually explore how the geometric study of adversarial examples can serve as a powerful tool to understand deep learning. Furthermore, we demonstrate the broad applicability of adversarial robustness, providing an overview of the main emerging applications of adversarial robustness beyond security. The goal of this article is to provide readers with a set of new perspectives to understand deep learning, and to supply them with intuitive tools and insights on how to use adversarial robustness to improve it.
Generative adversarial networks (GANs) are a hot research topic recently. GANs have been widely studied since 2014, and a large number of algorithms have been proposed. However, there is few comprehensive study explaining the connections among different GANs variants, and how they have evolved. In this paper, we attempt to provide a review on various GANs methods from the perspectives of algorithms, theory, and applications. Firstly, the motivations, mathematical representations, and structure of most GANs algorithms are introduced in details. Furthermore, GANs have been combined with other machine learning algorithms for specific applications, such as semi-supervised learning, transfer learning, and reinforcement learning. This paper compares the commonalities and differences of these GANs methods. Secondly, theoretical issues related to GANs are investigated. Thirdly, typical applications of GANs in image processing and computer vision, natural language processing, music, speech and audio, medical field, and data science are illustrated. Finally, the future open research problems for GANs are pointed out.
109 - Anh Bui , Trung Le , He Zhao 2021
Contrastive learning (CL) has recently emerged as an effective approach to learning representation in a range of downstream tasks. Central to this approach is the selection of positive (similar) and negative (dissimilar) sets to provide the model the opportunity to `contrast between data and class representation in the latent space. In this paper, we investigate CL for improving model robustness using adversarial samples. We first designed and performed a comprehensive study to understand how adversarial vulnerability behaves in the latent space. Based on these empirical evidences, we propose an effective and efficient supervised contrastive learning to achieve model robustness against adversarial attacks. Moreover, we propose a new sample selection strategy that optimizes the positive/negative sets by removing redundancy and improving correlation with the anchor. Experiments conducted on benchmark datasets show that our Adversarial Supervised Contrastive Learning (ASCL) approach outperforms the state-of-the-art defenses by $2.6%$ in terms of the robust accuracy, whilst our ASCL with the proposed selection strategy can further gain $1.4%$ improvement with only $42.8%$ positives and $6.3%$ negatives compared with ASCL without a selection strategy.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا