Do you want to publish a course? Click here

Learning Motion Priors for 4D Human Body Capture in 3D Scenes

156   0   0.0 ( 0 )
 Added by Siwei Zhang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Recovering high-quality 3D human motion in complex scenes from monocular videos is important for many applications, ranging from AR/VR to robotics. However, capturing realistic human-scene interactions, while dealing with occlusions and partial views, is challenging; current approaches are still far from achieving compelling results. We address this problem by proposing LEMO: LEarning human MOtion priors for 4D human body capture. By leveraging the large-scale motion capture dataset AMASS, we introduce a novel motion smoothness prior, which strongly reduces the jitters exhibited by poses recovered over a sequence. Furthermore, to handle contacts and occlusions occurring frequently in body-scene interactions, we design a contact friction term and a contact-aware motion infiller obtained via per-instance self-supervised training. To prove the effectiveness of the proposed motion priors, we combine them into a novel pipeline for 4D human body capture in 3D scenes. With our pipeline, we demonstrate high-quality 4D human body capture, reconstructing smooth motions and physically plausible body-scene interactions. The code and data are available at https://sanweiliti.github.io/LEMO/LEMO.html.



rate research

Read More

117 - Miao Liu , Dexin Yang , Yan Zhang 2020
To understand human daily social interaction from egocentric perspective, we introduce a novel task of reconstructing a time series of second-person 3D human body meshes from monocular egocentric videos. The unique viewpoint and rapid embodied camera motion of egocentric videos raise additional technical barriers for human body capture. To address those challenges, we propose a novel optimization-based approach that leverages 2D observations of the entire video sequence and human-scene interaction constraint to estimate second-person human poses, shapes and global motion that are grounded on the 3D environment captured from the egocentric view. We conduct detailed ablation studies to validate our design choice. Moreover, we compare our method with previous state-of-the-art method on human motion capture from monocular video, and show that our method estimates more accurate human-body poses and shapes under the challenging egocentric setting. In addition, we demonstrate that our approach produces more realistic human-scene interaction. Our project page is available at: https://aptx4869lm.github.io/4DEgocentricBodyCapture/
Synthesizing 3D human motion plays an important role in many graphics applications as well as understanding human activity. While many efforts have been made on generating realistic and natural human motion, most approaches neglect the importance of modeling human-scene interactions and affordance. On the other hand, affordance reasoning (e.g., standing on the floor or sitting on the chair) has mainly been studied with static human pose and gestures, and it has rarely been addressed with human motion. In this paper, we propose to bridge human motion synthesis and scene affordance reasoning. We present a hierarchical generative framework to synthesize long-term 3D human motion conditioning on the 3D scene structure. Building on this framework, we further enforce multiple geometry constraints between the human mesh and scene point clouds via optimization to improve realistic synthesis. Our experiments show significant improvements over previous approaches on generating natural and physically plausible human motion in a scene.
We present a new trainable system for physically plausible markerless 3D human motion capture, which achieves state-of-the-art results in a broad range of challenging scenarios. Unlike most neural methods for human motion capture, our approach, which we dub physionical, is aware of physical and environmental constraints. It combines in a fully differentiable way several key innovations, i.e., 1. a proportional-derivative controller, with gains predicted by a neural network, that reduces delays even in the presence of fast motions, 2. an explicit rigid body dynamics model and 3. a novel optimisation layer that prevents physically implausible foot-floor penetration as a hard constraint. The inputs to our system are 2D joint keypoints, which are canonicalised in a novel way so as to reduce the dependency on intrinsic camera parameters -- both at train and test time. This enables more accurate global translation estimation without generalisability loss. Our model can be finetuned only with 2D annotations when the 3D annotations are not available. It produces smooth and physically principled 3D motions in an interactive frame rate in a wide variety of challenging scenes, including newly recorded ones. Its advantages are especially noticeable on in-the-wild sequences that significantly differ from common 3D pose estimation benchmarks such as Human 3.6M and MPI-INF-3DHP. Qualitative results are available at http://gvv.mpi-inf.mpg.de/projects/PhysAware/
In this paper, we propose a pose grammar to tackle the problem of 3D human pose estimation. Our model directly takes 2D pose as input and learns a generalized 2D-3D mapping function. The proposed model consists of a base network which efficiently captures pose-aligned features and a hierarchy of Bi-directional RNNs (BRNN) on the top to explicitly incorporate a set of knowledge regarding human body configuration (i.e., kinematics, symmetry, motor coordination). The proposed model thus enforces high-level constraints over human poses. In learning, we develop a pose sample simulator to augment training samples in virtual camera views, which further improves our model generalizability. We validate our method on public 3D human pose benchmarks and propose a new evaluation protocol working on cross-view setting to verify the generalization capability of different methods. We empirically observe that most state-of-the-art methods encounter difficulty under such setting while our method can well handle such challenges.
83 - Xin Chen , Anqi Pang , Wei Yang 2021
Markerless motion capture and understanding of professional non-daily human movements is an important yet unsolved task, which suffers from complex motion patterns and severe self-occlusion, especially for the monocular setting. In this paper, we propose SportsCap -- the first approach for simultaneously capturing 3D human motions and understanding fine-grained actions from monocular challenging sports video input. Our approach utilizes the semantic and temporally structured sub-motion prior in the embedding space for motion capture and understanding in a data-driven multi-task manner. To enable robust capture under complex motion patterns, we propose an effective motion embedding module to recover both the implicit motion embedding and explicit 3D motion details via a corresponding mapping function as well as a sub-motion classifier. Based on such hybrid motion information, we introduce a multi-stream spatial-temporal Graph Convolutional Network(ST-GCN) to predict the fine-grained semantic action attributes, and adopt a semantic attribute mapping block to assemble various correlated action attributes into a high-level action label for the overall detailed understanding of the whole sequence, so as to enable various applications like action assessment or motion scoring. Comprehensive experiments on both public and our proposed datasets show that with a challenging monocular sports video input, our novel approach not only significantly improves the accuracy of 3D human motion capture, but also recovers accurate fine-grained semantic action attributes.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا