Do you want to publish a course? Click here

Towards Real-world X-ray Security Inspection: A High-Quality Benchmark and Lateral Inhibition Module for Prohibited Items Detection

122   0   0.0 ( 0 )
 Added by Renshuai Tao
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Prohibited items detection in X-ray images often plays an important role in protecting public safety, which often deals with color-monotonous and luster-insufficient objects, resulting in unsatisfactory performance. Till now, there have been rare studies touching this topic due to the lack of specialized high-quality datasets. In this work, we first present a High-quality X-ray (HiXray) security inspection image dataset, which contains 102,928 common prohibited items of 8 categories. It is the largest dataset of high quality for prohibited items detection, gathered from the real-world airport security inspection and annotated by professional security inspectors. Besides, for accurate prohibited item detection, we further propose the Lateral Inhibition Module (LIM) inspired by the fact that humans recognize these items by ignoring irrelevant information and focusing on identifiable characteristics, especially when objects are overlapped with each other. Specifically, LIM, the elaborately designed flexible additional module, suppresses the noisy information flowing maximumly by the Bidirectional Propagation (BP) module and activates the most identifiable charismatic, boundary, from four directions by Boundary Activation (BA) module. We evaluate our method extensively on HiXray and OPIXray and the results demonstrate that it outperforms SOTA detection methods.



rate research

Read More

Security inspection often deals with a piece of baggage or suitcase where objects are heavily overlapped with each other, resulting in an unsatisfactory performance for prohibited items detection in X-ray images. In the literature, there have been rare studies and datasets touching this important topic. In this work, we contribute the first high-quality object detection dataset for security inspection, named Occluded Prohibited Items X-ray (OPIXray) image benchmark. OPIXray focused on the widely-occurred prohibited item cutter, annotated manually by professional inspectors from the international airport. The test set is further divided into three occlusion levels to better understand the performance of detectors. Furthermore, to deal with the occlusion in X-ray images detection, we propose the De-occlusion Attention Module (DOAM), a plug-and-play module that can be easily inserted into and thus promote most popular detectors. Despite the heavy occlusion in X-ray imaging, shape appearance of objects can be preserved well, and meanwhile different materials visually appear with different colors and textures. Motivated by these observations, our DOAM simultaneously leverages the different appearance information of the prohibited item to generate the attention map, which helps refine feature maps for the general detectors. We comprehensively evaluate our module on the OPIXray dataset, and demonstrate that our module can consistently improve the performance of the state-of-the-art detection methods such as SSD, FCOS, etc, and significantly outperforms several widely-used attention mechanisms. In particular, the advantages of DOAM are more significant in the scenarios with higher levels of occlusion, which demonstrates its potential application in real-world inspections. The OPIXray benchmark and our model are released at https://github.com/OPIXray-author/OPIXray.
Automatic security inspection using computer vision technology is a challenging task in real-world scenarios due to various factors, including intra-class variance, class imbalance, and occlusion. Most of the previous methods rarely solve the cases that the prohibited items are deliberately hidden in messy objects due to the lack of large-scale datasets, restricted their applications in real-world scenarios. Towards real-world prohibited item detection, we collect a large-scale dataset, named as PIDray, which covers various cases in real-world scenarios for prohibited item detection, especially for deliberately hidden items. With an intensive amount of effort, our dataset contains $12$ categories of prohibited items in $47,677$ X-ray images with high-quality annotated segmentation masks and bounding boxes. To the best of our knowledge, it is the largest prohibited items detection dataset to date. Meanwhile, we design the selective dense attention network (SDANet) to construct a strong baseline, which consists of the dense attention module and the dependency refinement module. The dense attention module formed by the spatial and channel-wise dense attentions, is designed to learn the discriminative features to boost the performance. The dependency refinement module is used to exploit the dependencies of multi-scale features. Extensive experiments conducted on the collected PIDray dataset demonstrate that the proposed method performs favorably against the state-of-the-art methods, especially for detecting the deliberately hidden items.
Security inspection is X-ray scanning for personal belongings in suitcases, which is significantly important for the public security but highly time-consuming for human inspectors. Fortunately, deep learning has greatly promoted the development of computer vision, offering a possible way of automatic security inspection. However, items within a luggage are randomly overlapped resulting in noisy X-ray images with heavy occlusions. Thus, traditional CNN-based models trained through common image recognition datasets fail to achieve satisfactory performance in this scenario. To address these problems, we contribute the first high-quality prohibited X-ray object detection dataset named OPIXray, which contains 8885 X-ray images from 5 categories of the widely-occurred prohibited item ``cutters. The images are gathered from an airport and these prohibited items are annotated manually by professional inspectors, which can be used as a benchmark for model training and further facilitate future research. To better improve occluded X-ray object detection, we further propose an over-sampling de-occlusion attention network (DOAM-O), which consists of a novel de-occlusion attention module and a new over-sampling training strategy. Specifically, our de-occlusion module, namely DOAM, simultaneously leverages the different appearance information of the prohibited items; the over-sampling training strategy forces the model to put more emphasis on these hard samples consisting these items of high occlusion levels, which is more suitable for this scenario. We comprehensively evaluated DOAM-O on the OPIXray dataset, which proves that our model can stably improve the performance of the famous detection models such as SSD, YOLOv3, and FCOS, and outperform many extensively-used attention mechanisms.
Depth maps obtained by commercial depth sensors are always in low-resolution, making it difficult to be used in various computer vision tasks. Thus, depth map super-resolution (SR) is a practical and valuable task, which upscales the depth map into high-resolution (HR) space. However, limited by the lack of real-world paired low-resolution (LR) and HR depth maps, most existing methods use downsampling to obtain paired training samples. To this end, we first construct a large-scale dataset named RGB-D-D, which can greatly promote the study of depth map SR and even more depth-related real-world tasks. The D-D in our dataset represents the paired LR and HR depth maps captured from mobile phone and Lucid Helios respectively ranging from indoor scenes to challenging outdoor scenes. Besides, we provide a fast depth map super-resolution (FDSR) baseline, in which the high-frequency component adaptively decomposed from RGB image to guide the depth map SR. Extensive experiments on existing public datasets demonstrate the effectiveness and efficiency of our network compared with the state-of-the-art methods. Moreover, for the real-world LR depth maps, our algorithm can produce more accurate HR depth maps with clearer boundaries and to some extent correct the depth value errors.
We introduce a new large-scale dataset that links the assessment of image quality issues to two practical vision tasks: image captioning and visual question answering. First, we identify for 39,181 images taken by people who are blind whether each is sufficient quality to recognize the content as well as what quality flaws are observed from six options. These labels serve as a critical foundation for us to make the following contributions: (1) a new problem and algorithms for deciding whether an image is insufficient quality to recognize the content and so not captionable, (2) a new problem and algorithms for deciding which of six quality flaws an image contains, (3) a new problem and algorithms for deciding whether a visual question is unanswerable due to unrecognizable content versus the content of interest being missing from the field of view, and (4) a novel application of more efficiently creating a large-scale image captioning dataset by automatically deciding whether an image is insufficient quality and so should not be captioned. We publicly-share our datasets and code to facilitate future extensions of this work: https://vizwiz.org.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا