The transition from conventional methods of energy production to renewable energy production necessitates better prediction models of the upcoming supply of renewable energy. In wind power production, error in forecasting production is impossible to negate owing to the intermittence of wind. For successful power grid integration, it is crucial to understand the uncertainties that arise in predicting wind power production and use this information to build an accurate and reliable forecast. This can be achieved by observing the fluctuations in wind power production with changes in different parameters such as wind speed, temperature, and wind direction, and deriving functional dependencies for the same. Using optimized machine learning algorithms, it is possible to find obscured patterns in the observations and obtain meaningful data, which can then be used to accurately predict wind power requirements . Utilizing the required data provided by the Gamesas wind farm at Bableshwar, the paper explores the use of both parametric and the non-parametric models for calculating wind power prediction using power curves. The obtained results are subject to comparison to better understand the accuracy of the utilized models and to determine the most suitable model for predicting wind power production based on the given data set.