Non-Abelian braiding in spin superconductors utilizing the Aharonov-Casher effect


Abstract in English

Spin superconductor (SSC) is an exciton condensate state where the spin-triplet exciton superfluidity is charge neutral while spin $2(hbar/2)$. In analogy to the Majorana zero mode (MZM) in topological superconductors, the interplay between SSC and band topology will also give rise to a specific kind of topological boundary state obeying non-Abelian braiding statistics. Remarkably, the non-Abelian geometric phase here originates from the Aharonov-Casher effect of the half-charge other than the Aharonov-Bohm effect. Such topological boundary state of SSC is bound with the vortex of electric flux gradient and can be experimentally more distinct than the MZM for being electrically charged. This theoretical proposal provides a new avenue investigating the non-Abelian braiding physics without the assistance of MZM and charge superconductor.

Download