Do you want to publish a course? Click here

Possibility of superradiant phase transitions in coupled two-level atoms

164   0   0.0 ( 0 )
 Added by Yuyu Zhang
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Although the oscillator strength sum rule forbids the phase transition in ideal non-interacting two-level atoms systems, we present the possibility of the quantum phase transition in the coupled two-level atoms in a cavity. The system undergoes the superradiant phase transition in the thermodynamics limit and this transition is account for the atom-atom attractive interaction, exhibiting a violation of the sum rule. The bosonic coherent state technique has been adopted to locate the quantum critical point accurately in the finite-size system. We predict the existence of the superadiant phase transition as the number of atoms increases, satisfying all the constraints imposed by the sum rule.



rate research

Read More

We prove, by means of a unified treatment, that the superradiant phase transitions of Dicke and classical oscillator limits of simple light-matter models are indeed of the same type. We show that the mean-field approximation is exact in both cases, and compute the structure and location of the transitions in parameter space. We extend this study to a fuller range of models, paying special attention to symmetry considerations. We uncover general features of the phase structure in the space of parameters of these models.
Quantum phase transitions are often embodied by the critical behavior of purely quantum quantities such as entanglement or quantum fluctuations. In critical regions, we underline a general scaling relation between the entanglement entropy and one of the most fundamental and simplest measure of the quantum fluctuations, the Heisenberg uncertainty principle. Then, we show that the latter represents a sensitive probe of superradiant quantum phase transitions in standard models of photons such as the Dicke Hamiltonian, which embodies an ensemble of two-level systems interacting with one quadrature of a single and uniform bosonic field. We derive exact results in the thermodynamic limit and for a finite number N of two-level systems: as a reminiscence of the entanglement properties between light and the two-level systems, the product $Delta xDelta p$ diverges at the quantum critical point as $N^{1/6}$. We generalize our results to the double quadrature Dicke model where the two quadratures of the bosonic field are now coupled to two independent sets of two level systems. Our findings, which show that the entanglement properties between light and matter can be accessed through the Heisenberg uncertainty principle, can be tested using Bose-Einstein condensates in optical cavities and circuit quantum electrodynamics
We show that entanglement monotones can characterize the pronounced enhancement of entanglement at a quantum phase transition if they are sensitive to long-range high order correlations. These monotones are found to develop a sharp peak at the critical point and to exhibit universal scaling. We demonstrate that similar features are shared by noise correlations and verify that these experimentally accessible quantities indeed encode entanglement information and probe separability.
315 - B. Leggio , A. Napoli , A. Messina 2011
We show that a two-atoms Bose-Hubbard model exhibits three different phases in the behavior of thermal entanglement in its parameter space. These phases are demonstrated to be traceable back to the existence of quantum phase transitions in the same system. Significant similarities between the behaviors of thermal entanglement and heat capacity in the parameter space are brought to light thus allowing to interpret the occurrence and the meaning of all these three phases.
271 - Xiuqin Zhao , Ni Liu , Xuemin Bai 2017
We in this paper derive the analytical expressions of ground-state energy, average photon-number, and the atomic population by means of the spin-coherent-state variational method for arbitrary number of atoms in an optomechanical cavity. It is found that the existence of mechanical oscil- lator does not affect the phase boundary between the normal and superradiant phases. However, the superradiant phase collapses by the resonant damping of the oscillator when the atom-field coupling increases to a so-called turning point. As a consequence the system undergoes at this point an additional phase transition from the superradiant phase to a new normal phase of the atomic population-inversion state. The region of superradiant phase decreases with the increase of photon-phonon coupling. It shrinks to zero at a critical value of the coupling and a direct atomic population transfer appears between two atom-levels. Moreover we find an unstable nonzero-photon state, which is the counterpart of the superradiant state. In the absence of oscillator our result re- duces exactly to that of Dicke model. Particularly the ground-state energy for N = 1 (i.e. the Rabi model) is in perfect agreement with the numerical diagonalization in a wide region of coupling constant for both red and blue detuning. The Dicke phase transition remains for the Rabi model in agreement with the recent observation.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا