Averaged mixed Julia-Fatou type theory with applications to spectral foliation


Abstract in English

Classically, theorems of Fatou and Julia describe the boundary regularity of functions in one complex variable. The former says that a complex analytic function on the disk has non-tangential boundary values almost everywhere, and the latter describes when a function takes an extreme value at a boundary point and is differentiable there non-tangentially. We describe a class of intermediate theorems in terms of averaged Julia-Fatou quotients. Boundary regularity is related to integrability of certain quantities against a special measure, the so-called Nevanlinna measure. Applications are given to spectral theory.

Download