Do you want to publish a course? Click here

Spin-Rotational Excitation Bubbles in Hexagonal LuMnO3

60   0   0.0 ( 0 )
 Added by Seung Kim
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Optical control of the spin degree of freedom is often desired in application of the spin technology. Here we report spin-rotational excitations observed through inelastic light scattering of the hexagonal LuMnO3 in the antiferromagnetically (AFM) ordered state. We propose a model based on the spin-spin interaction Hamiltonian associated with the spin rotation of the Mn ions, and find that the spin rotations are angularly quantized by 60, 120, and 180 degrees. Angular quantization is considered to be a consequence of the symmetry of the triangular lattice of the Mn-ion plane in the hexagonal LuMnO3. These angularly-quantized spin excitations may be pictured as isolated flat bubbles in the sea of the ground state, which may lead to high-density information storage if applied to spin devices. Optically pumped and detected spin-excitation bubbles would bring about the advanced technology of optical control of the spin degree of freedom in multiferroic materials.



rate research

Read More

Strong spin-lattice coupling and prominent frustration effects observed in the 50$%$ Fe-doped frustrated hexagonal ($h$)LuMnO$_3$ are reported. A N{e}el transition at $T_{mathrm N} approx$ 112~K and a possible spin re-orientation transition at $T_{mathrm {SR}} approx$ 55~K are observed in the magnetization data. From neutron powder diffraction data, the nuclear structure at and below 300~K was refined in polar $P6_3cm$ space group. While the magnetic structure of LuMnO$_3$ belongs to the $Gamma_4$ ($P6_3cm$) representation, that of LuFe$_{0.5}$Mn$_{0.5}$O$_3$ belongs to $Gamma_1$ ($P6_3cm$) which is supported by the strong intensity for the $mathbf{(100)}$ reflection and also judging by the presence of spin-lattice coupling. The refined atomic positions for Lu and Mn/Fe indicate significant atomic displacements at $T_{mathrm N}$ and $T_{mathrm {SR}}$ which confirms strong spin-lattice coupling. Our results complement the discovery of room temperature multiferroicity in thin films of $h$LuFeO$_3$ and would give impetus to study LuFe$_{1-x}$Mn$_x$O$_3$ systems as potential multiferroics where electric polarization is linked to giant atomic displacements.
We have investigated the (0001) surfaces of several hexagonal manganite perovskites by low-energy electron diffraction (LEED) in order to determine if the surface periodicity is different from that of the bulk materials. These LEED studies were conducted using near-normal incidence geometry with a low energy electron microscope (LEEM)/LEED apparatus from room temperature to 1200 degrees Celsius and with an electron energy in the range of 15-50 eV. Diffraction patterns showed features of bulk-terminated periodicity as well as a 2times2 surface reconstruction. Possible origins for this surface reconstruction structure are discussed and comparisons are made with surface studies of other complex oxides.
We present data on the magnetic and magneto-elastic coupling in the hexagonal multiferroic manganite LuMnO3 from inelastic neutron scattering, magnetization and thermal expansion measurements. We measured the magnon dispersion along the main symmetry directions and used this data to determine the principal exchange parameters from a spin-wave model. An analysis of the magnetic anisotropy in terms of the crystal field acting on the Mn is presented. We compare the results for LuMnO3 with data on other hexagonal RMnO3 compounds.
Magnetic excitation in a spin dimer system on a bilayer honeycomb lattice is investigated in the presence of a zigzag edge, where disordered and ordered phases can be controlled by a quantum phase transition. In analogy with the case of graphene with a zigzag edge, a flat edge magnon mode appears in the disordered phase. In an ordered phase, a finite magnetic moment generates a mean-field potential to the magnon. Since the potential is nonuniform on the edge and bulk sites, it affects the excitation, and the dispersion of the edge mode deviates from the flat shape. We investigate how the edge magnon mode evolves when the phase changes through the quantum phase transition and discuss the similarities to ordered spin systems on a monolayer honeycomb lattice.
We have measured the optical conductivity of single crystal LuMnO3 from 10 to 45000 cm-1 at temperatures between 4 and 300 K. A symmetry allowed on-site Mn $d$-$d$ transition near 1.7 eV is observed to blue shift (~0.1 eV) in the antiferromagnetic state due to Mn-Mn superexchange interactions. Similar anomalies are observed in the temperature dependence of the TO phonon frequencies which arise from spin-phonon interaction. We find that the known anomaly in temperature dependence of the quasi-static dielectric constant epsilon_0 below the T_N ~90 K is overwhelmingly dominated by the phonon contributions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا