No Arabic abstract
In recent years, many recommender systems using network embedding (NE) such as graph neural networks (GNNs) have been extensively studied in the sense of improving recommendation accuracy. However, such attempts have focused mostly on utilizing only the information of positive user-item interactions with high ratings. Thus, there is a challenge on how to make use of low rating scores for representing users preferences since low ratings can be still informative in designing NE-based recommender systems. In this study, we present SiReN, a new sign-aware recommender system based on GNN models. Specifically, SiReN has three key components: 1) constructing a signed bipartite graph for more precisely representing users preferences, which is split into two edge-disjoint graphs with positive and negative edges each, 2) generating two embeddings for the partitioned graphs with positive and negative edges via a GNN model and a multi-layer perceptron (MLP), respectively, and then using an attention model to obtain the final embeddings, and 3) establishing a sign-aware Bayesian personalized ranking (BPR) loss function in the process of optimization. Through comprehensive experiments, we empirically demonstrate that SiReN consistently outperforms state-of-the-art NE-aided recommendation methods.
The problem of session-aware recommendation aims to predict users next click based on their current session and historical sessions. Existing session-aware recommendation methods have defects in capturing complex item transition relationships. Other than that, most of them fail to explicitly distinguish the effects of different historical sessions on the current session. To this end, we propose a novel method, named Personalized Graph Neural Networks with Attention Mechanism (A-PGNN) for brevity. A-PGNN mainly consists of two components: one is Personalized Graph Neural Network (PGNN), which is used to extract the personalized structural information in each user behavior graph, compared with the traditional Graph Neural Network (GNN) model, which considers the role of the user when the node embeddding is updated. The other is Dot-Product Attention mechanism, which draws on the Transformer net to explicitly model the effect of historical sessions on the current session. Extensive experiments conducted on two real-world data sets show that A-PGNN evidently outperforms the state-of-the-art personalized session-aware recommendation methods.
To alleviate data sparsity and cold-start problems of traditional recommender systems (RSs), incorporating knowledge graphs (KGs) to supplement auxiliary information has attracted considerable attention recently. However, simply integrating KGs in current KG-based RS models is not necessarily a guarantee to improve the recommendation performance, which may even weaken the holistic model capability. This is because the construction of these KGs is independent of the collection of historical user-item interactions; hence, information in these KGs may not always be helpful for recommendation to all users. In this paper, we propose attentive Knowledge-aware Graph convolutional networks with Collaborative Guidance for personalized Recommendation (CG-KGR). CG-KGR is a novel knowledge-aware recommendation model that enables ample and coherent learning of KGs and user-item interactions, via our proposed Collaborative Guidance Mechanism. Specifically, CG-KGR first encapsulates historical interactions to interactive information summarization. Then CG-KGR utilizes it as guidance to extract information out of KGs, which eventually provides more precise personalized recommendation. We conduct extensive experiments on four real-world datasets over two recommendation tasks, i.e., Top-K recommendation and Click-Through rate (CTR) prediction. The experimental results show that the CG-KGR model significantly outperforms recent state-of-the-art models by 4.0-53.2% and 0.4-3.2%, in terms of Recall metric on Top-K recommendation and AUC on CTR prediction, respectively.
Predicting the next interaction of a short-term interaction session is a challenging task in session-based recommendation. Almost all existing works rely on item transition patterns, and neglect the impact of user historical sessions while modeling user preference, which often leads to non-personalized recommendation. Additionally, existing personalized session-based recommenders capture user preference only based on the sessions of the current user, but ignore the useful item-transition patterns from other users historical sessions. To address these issues, we propose a novel Heterogeneous Global Graph Neural Networks (HG-GNN) to exploit the item transitions over all sessions in a subtle manner for better inferring user preference from the current and historical sessions. To effectively exploit the item transitions over all sessions from users, we propose a novel heterogeneous global graph that contains item transitions of sessions, user-item interactions and global co-occurrence items. Moreover, to capture user preference from sessions comprehensively, we propose to learn two levels of user representations from the global graph via two graph augmented preference encoders. Specifically, we design a novel heterogeneous graph neural network (HGNN) on the heterogeneous global graph to learn the long-term user preference and item representations with rich semantics. Based on the HGNN, we propose the Current Preference Encoder and the Historical Preference Encoder to capture the different levels of user preference from the current and historical sessions, respectively. To achieve personalized recommendation, we integrate the representations of the user current preference and historical interests to generate the final user preference representation. Extensive experimental results on three real-world datasets show that our model outperforms other state-of-the-art methods.
Modeling user preference from his historical sequences is one of the core problems of sequential recommendation. Existing methods in this field are widely distributed from conventional methods to deep learning methods. However, most of them only model users interests within their own sequences and ignore the dynamic collaborative signals among different user sequences, making it insufficient to explore users preferences. We take inspiration from dynamic graph neural networks to cope with this challenge, modeling the user sequence and dynamic collaborative signals into one framework. We propose a new method named Dynamic Graph Neural Network for Sequential Recommendation (DGSR), which connects different user sequences through a dynamic graph structure, exploring the interactive behavior of users and items with time and order information. Furthermore, we design a Dynamic Graph Recommendation Network to extract users preferences from the dynamic graph. Consequently, the next-item prediction task in sequential recommendation is converted into a link prediction between the user node and the item node in a dynamic graph. Extensive experiments on three public benchmarks show that DGSR outperforms several state-of-the-art methods. Further studies demonstrate the rationality and effectiveness of modeling user sequences through a dynamic graph.
Recommender systems take inputs from user history, use an internal ranking algorithm to generate results and possibly optimize this ranking based on feedback. However, often the recommender system is unaware of the actual intent of the user and simply provides recommendations dynamically without properly understanding the thought process of the user. An intelligent recommender system is not only useful for the user but also for businesses which want to learn the tendencies of their users. Finding out tendencies or intents of a user is a difficult problem to solve. Keeping this in mind, we sought out to create an intelligent system which will keep track of the users activity on a web-application as well as determine the intent of the user in each session. We devised a way to encode the users activity through the sessions. Then, we have represented the information seen by the user in a high dimensional format which is reduced to lower dimensions using tensor factorization techniques. The aspect of intent awareness (or scoring) is dealt with at this stage. Finally, combining the user activity data with the contextual information gives the recommendation score. The final recommendations are then ranked using filtering and collaborative recommendation techniques to show the top-k recommendations to the user. A provision for feedback is also envisioned in the current system which informs the model to update the various weights in the recommender system. Our overall model aims to combine both frequency-based and context-based recommendation systems and quantify the intent of a user to provide better recommendations. We ran experiments on real-world timestamped user activity data, in the setting of recommending reports to the users of a business analytics tool and the results are better than the baselines. We also tuned certain aspects of our model to arrive at optimized results.