No Arabic abstract
Charged domain walls form spontaneously in Cu-Cl boracite on cooling through the phase transition. These walls exhibit changed conductivity compared to the bulk and motion consistent with the existence of negative capacitance. Here, we present the dielectric permittivity and DC resistivity of bulk Cu-Cl boracite as a function of temperature (-140 {deg}C to 150 {deg}C) and frequency (1 mHz to 10 MHz). The thermal behaviour of the two observed dielectric relaxations and the DC resistivity is discussed. We propose that the relaxations can be explained by the existence of point defects, most likely local complexes created by a change of valence of Cu and accompanying oxygen vacancies. In addition, the sudden change in resistivity seen at the phase transition suggests that conductive domain walls contribute significantly to the conductivity in the ferroelectric phase.
We report a single-crystal neutron diffraction and inelastic neutron scattering study on the spin 1/2 cuprate Cu$_3$Bi(SeO$_3$)$_2$O$_2$Cl, complemented by dielectric and electric polarization measurements. The study clarifies a number of open issues concerning this complex material, whose frustrated interactions on a kagome-like lattice, combined with Dzyaloshinskii-Moriya interactions, are expected to stabilize an exotic canted antiferromagnetic order. In particular, we determine the nature of the structural transition occurring at 115 K, the magnetic structure below 25 K resolved in the updated space group, and the microscopic ingredients at the origin of this magnetic arrangement. This was achieved by an analysis of the measured gapped spin waves, which signifies the need of an unexpected and significant anisotropic exchange beyond the proposed Dzyaloshinskii-Moriya interactions. Finally, we discuss the mutliferroic properties of this material with respect to the space group symmetries.
We show the evolution of Raman spectra with number of graphene layers on different substrates, SiO$_{2}$/Si and conducting indium tin oxide (ITO) plate. The G mode peak position and the intensity ratio of G and 2D bands depend on the preparation of sample for the same number of graphene layers. The 2D Raman band has characteristic line shapes in single and bilayer graphene, capturing the differences in their electronic structure. The defects have a significant influence on the G band peak position for the single layer graphene: the frequency shows a blue shift upto 12 cm$^{-1}$ depending on the intensity of the D Raman band, which is a marker of the defect density. Most surprisingly, Raman spectra of graphene on the conducting ITO plates show a lowering of the G mode frequency by $sim$ 6 cm$^{-1}$ and the 2D band frequency by $sim$ 20 cm$^{-1}$. This red-shift of the G and 2D bands is observed for the first time in single layer graphene.
The influence of the surface structure and vibration mode on the resistivity of Cu films and the corresponding size effect are investigated. The temperature dependent conductivities of the films with different surface morphologies are calculated by the algorithm based upon the tight-binding linear muffin-tin orbital method and the Greens function technique. The thermal effect is introduced by setting the atomic displacements according to the Gaussian distribution with the mean-square amplitude estimated by the Debye model. The result shows that the surface atomic vibration contributes significantly to the resistivity of the systems. Comparing the conductivities for three different vibration modes, it is suggested that freezing the surface vibration is necessary for practical applications to reduce the resistivity induced by the surface electron-phonon scattering.
This work studies the influence of microstructures and crystalline defects on the superconductivity of MgB2, with the objective to improve its flux pinning. A MgB2 sample pellet that was hot isostatic pressed (HIPed) was found to have significantly increased critical current density (Jc) at high fields than its un-HIPed counterpart. The HIPed sample had a Jc of 10000 A/cm2 in 50000 Oe (5 T) at 5K. This was 20 times higher than that of the un-HIPed sample, and the same as the best Jc reported by other research groups. Microstructures observed in scanning and transmission electron microscopy indicate that the HIP process eliminated porosity present in the MgB2 pellet resulting in an improved intergrain connectivity. Such improvement in intergrain connectivity was believed to prevent the steep Jc drop with magnetic field H that occurred in the un-HIPed MgB2 pellet at H > 45000 Oe (4.5 T) and T = 5 K. The HIP process was also found to disperse the MgO that existed at the grain boundaries of the un-HIPed MgB2 pellet and to generate more dislocations in the HIPed the pellets. These dispersed MgO particles and dislocations improved flux pinning also at H<45000 Oe. The HIPing process was also found to lower the resistivity at room temperature.
The exciton Wannier equation for graphene is solved for different background dielectric constants. It is shown that freestanding graphene features strong Coulomb effects with a very large exciton binding energy exceeding $3,$eV. A second-order transition to a weak Coulomb regime is found if the effective background dielectric constant exceeds a critical value. All bound-state solutions vanish for epitaxial graphene on a substrate with large background permittivity, such as SiC.