Do you want to publish a course? Click here

Gluing n-tilting and n-cotilting subcategories

159   0   0.0 ( 0 )
 Added by Panyue Zhou
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

Recently, Wang, Wei and Zhang define the recollement of extriangulated categories, which is a generalization of both recollement of abelian categories and recollement of triangulated categories. For a recollement $(mathcal A ,mathcal B,mathcal C)$ of extriangulated categories, we show that $n$-tilting (resp. $n$-cotilting) subcategories in $mathcal A$ and $mathcal C$ can be glued to get $n$-tilting (resp. $n$-cotilting) subcategories in $mathcal B$ under certain conditions.



rate research

Read More

191 - Panyue Zhou 2021
Let $mathscr C$ be a Krull-Schmidt $(n+2)$-angulated category and $mathscr A$ be an $n$-extension closed subcategory of $mathscr C$. Then $mathscr A$ has the structure of an $n$-exangulated category in the sense of Herschend-Liu-Nakaoka. This construction gives $n$-exangulated categories which are not $n$-exact categories in the sense of Jasso nor $(n+2)$-angulated categories in the sense of Geiss-Keller-Oppermann in general. As an application, our result can lead to a recent main result of Klapproth.
Let $Lambda$ be an artin algebra and $mathcal{M}$ be an n-cluster tilting subcategory of mod$Lambda$. We show that $mathcal{M}$ has an additive generator if and only if the n-almost split sequences form a basis for the relations for the Grothendieck group of $mathcal{M}$ if and only if every effaceable functor $mathcal{M}rightarrow Ab$ has finite length. As a consequence we show that if mod$Lambda$ has n-cluster tilting subcategory of finite type then the n-almost split sequences form a basis for the relations for the Grothendieck group of $Lambda$.
82 - Jin Yun Guo , Cong Xiao 2019
APR tilts for path algebra $kQ$ can be realized as the mutation of the quiver $Q$ in $mathbb Z Q$ with respect to the translation. In this paper, we show that we have similar results for the quadratic dual of truncations of $n$-translation algebras, that is, under certain condition, the $n$-APR tilts of such algebras are realized as $tau$-mutations.For the dual $tau$-slice algebras with bound quiver $Q^{perp}$, we show that their iterated $n$-APR tilts are realized by the iterated $tau$-mutations in $mathbb Z|{n-1}Q^{perp}$.
204 - Carlo Klapproth 2021
Let $mathscr{F}$ be an $(n+2)$-angulated Krull-Schmidt category and $mathscr{A} subset mathscr{F}$ an $n$-extension closed, additive and full subcategory with $operatorname{Hom}_{mathscr{F}}(Sigma_n mathscr{A}, mathscr{A}) = 0$. Then $mathscr{A}$ naturally carries the structure of an $n$-exact category in the sense of Jasso, arising from short $(n+2)$-angles in $mathscr{F}$ with objects in $mathscr{A}$ and there is a binatural and bilinear isomorphism $operatorname{YExt}^{n}_{(mathscr{A},mathscr{E}_{mathscr{A}})}(A_{n+1},A_0) cong operatorname{Hom}_{mathscr{F}}(A_{n+1}, Sigma_n A_{0})$ for $A_0, A_{n+1} in mathscr{A}$. For $n = 1$ this has been shown by Dyer and we generalize this result to the case $n > 1$. On the journey to this result, we also develop a technique for harvesting information from the higher octahedral axiom (N4*) as defined by Bergh and Thaule. Additionally, we show that the axiom (F3) for pre-$(n+2)$-angulated categories, introduced by Geiss, Keller and Oppermann and stating that a commutative square can be extended to a morphism of $(n+2)$-angles, implies a stronger version of itself.
104 - Jian He , Panyue Zhou 2021
The notion of right semi-equivalence in a right $(n+2)$-angulated category is defined in this article. Let $mathscr C$ be an $n$-exangulated category and $mathscr X$ is a strongly covariantly finite subcategory of $mathscr C$. We prove that the standard right $(n+2)$-angulated category $mathscr C/mathscr X$ is right semi-equivalence under a natural assumption. As an application, we show that a right $(n+2)$-angulated category has an $n$-exangulated structure if and only if the suspension functor is right semi-equivalence. Besides, we also prove that an $n$-exangulated category $mathscr C$ has the structure of a right $(n+2)$-angulated category with right semi-equivalence if and only if for any object $Xinmathscr C$, the morphism $Xto 0$ is a trivial inflation.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا