Do you want to publish a course? Click here

Table Caption Generation in Scholarly Documents Leveraging Pre-trained Language Models

118   0   0.0 ( 0 )
 Added by Junjie Xu H.
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

This paper addresses the problem of generating table captions for scholarly documents, which often require additional information outside the table. To this end, we propose a method of retrieving relevant sentences from the paper body, and feeding the table content as well as the retrieved sentences into pre-trained language models (e.g. T5 and GPT-2) for generating table captions. The contributions of this paper are: (1) discussion on the challenges in table captioning for scholarly documents; (2) development of a dataset DocBank-TB, which is publicly available; and (3) comparison of caption generation methods for scholarly documents with different strategies to retrieve relevant sentences from the paper body. Our experimental results showed that T5 is the better generation model for this task, as it outperformed GPT-2 in BLEU and METEOR implying that the generated text are clearer and more precise. Moreover, inputting relevant sentences matching the row header or whole table is effective.



rate research

Read More

Hostile content on social platforms is ever increasing. This has led to the need for proper detection of hostile posts so that appropriate action can be taken to tackle them. Though a lot of work has been done recently in the English Language to solve the problem of hostile content online, similar works in Indian Languages are quite hard to find. This paper presents a transfer learning based approach to classify social media (i.e Twitter, Facebook, etc.) posts in Hindi Devanagari script as Hostile or Non-Hostile. Hostile posts are further analyzed to determine if they are Hateful, Fake, Defamation, and Offensive. This paper harnesses attention based pre-trained models fine-tuned on Hindi data with Hostile-Non hostile task as Auxiliary and fusing its features for further sub-tasks classification. Through this approach, we establish a robust and consistent model without any ensembling or complex pre-processing. We have presented the results from our approach in CONSTRAINT-2021 Shared Task on hostile post detection where our model performs extremely well with 3rd runner up in terms of Weighted Fine-Grained F1 Score.
Large scale Pre-trained Language Models have proven to be very powerful approach in various Natural language tasks. OpenAIs GPT-2 cite{radford2019language} is notable for its capability to generate fluent, well formulated, grammatically consistent text and for phrase completions. In this paper we leverage this generation capability of GPT-2 to generate paraphrases without any supervision from labelled data. We examine how the results compare with other supervised and unsupervised approaches and the effect of using paraphrases for data augmentation on downstream tasks such as classification. Our experiments show that paraphrases generated with our model are of good quality, are diverse and improves the downstream task performance when used for data augmentation.
Chinese pre-trained language models usually process text as a sequence of characters, while ignoring more coarse granularity, e.g., words. In this work, we propose a novel pre-training paradigm for Chinese -- Lattice-BERT, which explicitly incorporates word representations along with characters, thus can model a sentence in a multi-granularity manner. Specifically, we construct a lattice graph from the characters and words in a sentence and feed all these text units into transformers. We design a lattice position attention mechanism to exploit the lattice structures in self-attention layers. We further propose a masked segment prediction task to push the model to learn from rich but redundant information inherent in lattices, while avoiding learning unexpected tricks. Experiments on 11 Chinese natural language understanding tasks show that our model can bring an average increase of 1.5% under the 12-layer setting, which achieves new state-of-the-art among base-size models on the CLUE benchmarks. Further analysis shows that Lattice-BERT can harness the lattice structures, and the improvement comes from the exploration of redundant information and multi-granularity representations. Our code will be available at https://github.com/alibaba/pretrained-language-models/LatticeBERT.
Reasoning about events and tracking their influences is fundamental to understanding processes. In this paper, we present EIGEN - a method to leverage pre-trained language models to generate event influences conditioned on a context, nature of their influence, and the distance in a reasoning chain. We also derive a new dataset for research and evaluation of methods for event influence generation. EIGEN outperforms strong baselines both in terms of automated evaluation metrics (by 10 ROUGE points) and human judgments on closeness to reference and relevance of generations. Furthermore, we show that the event influences generated by EIGEN improve the performance on a what-if Question Answering (WIQA) benchmark (over 3% F1), especially for questions that require background knowledge and multi-hop reasoning.
210 - Yixuan Su , Deng Cai , Yan Wang 2021
Non-autoregressive generation (NAG) has recently attracted great attention due to its fast inference speed. However, the generation quality of existing NAG models still lags behind their autoregressive counterparts. In this work, we show that BERT can be employed as the backbone of a NAG model to greatly improve performance. Additionally, we devise mechanisms to alleviate the two common problems of vanilla NAG models: the inflexibility of prefixed output length and the conditional independence of individual token predictions. Lastly, to further increase the speed advantage of the proposed model, we propose a new decoding strategy, ratio-first, for applications where the output lengths can be approximately estimated beforehand. For a comprehensive evaluation, we test the proposed model on three text generation tasks, including text summarization, sentence compression and machine translation. Experimental results show that our model significantly outperforms existing non-autoregressive baselines and achieves competitive performance with many strong autoregressive models. In addition, we also conduct extensive analysis experiments to reveal the effect of each proposed component.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا