Do you want to publish a course? Click here

Extreme points of the unit ball of Paley-Wiener space over two symmetric intervals

70   0   0.0 ( 0 )
 Added by Ilia Zlotnikov
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

Let $PW_S^1$ be the space of integrable functions on $mathbb{R}$ whose Fourier transform vanishes outside $S$, where $S = [-sigma,-rho]cup[rho,sigma]$, $0<rho<sigma$. In the case $rho>sigma/2$, we present a complete description of the extreme points of the unit ball of $PW_S^1$. This description is no longer true if $rho<sigma/2$. For $rho>sigma/2$ we also show that every $f in PW^1_S, , |f|_1 =1,$ can be represented as $f = (f_1 + f_2)/2$ where $f_1$ and $f_2$ are extreme.



rate research

Read More

We develop real Paley-Wiener theorems for classes ${mathcal S}_omega$ of ultradifferentiable functions and related $L^{p}$-spaces in the spirit of Bang and Andersen for the Schwartz class. We introduce results of this type for the so-called Gabor transform and give a full characterization in terms of Fourier and Wigner transforms for several variables of a Paley-Wiener theorem in this general setting, which is new in the literature. We also analyze this type of results when the support of the function is not compact using polynomials. Some examples are given.
71 - Quanhua Xu 2021
We study vector-valued Littlewood-Paley-Stein theory for semigroups of regular contractions ${T_t}_{t>0}$ on $L_p(Omega)$ for a fixed $1<p<infty$. We prove that if a Banach space $X$ is of martingale cotype $q$, then there is a constant $C$ such that $$ left|left(int_0^inftybig|tfrac{partial}{partial t}P_t (f)big|_X^q,frac{dt}tright)^{frac1q}right|_{L_p(Omega)}le C, big|fbig|_{L_p(Omega; X)},, quadforall, fin L_p(Omega; X),$$ where ${P_t}_{t>0}$ is the Poisson semigroup subordinated to ${T_t}_{t>0}$. Let $mathsf{L}^P_{c, q, p}(X)$ be the least constant $C$, and let $mathsf{M}_{c, q}(X)$ be the martingale cotype $q$ constant of $X$. We show $$mathsf{L}^{P}_{c,q, p}(X)lesssim maxbig(p^{frac1{q}},, pbig) mathsf{M}_{c,q}(X).$$ Moreover, the order $maxbig(p^{frac1{q}},, pbig)$ is optimal as $pto1$ and $ptoinfty$. If $X$ is of martingale type $q$, the reverse inequality holds. If additionally ${T_t}_{t>0}$ is analytic on $L_p(Omega; X)$, the semigroup ${P_t}_{t>0}$ in these results can be replaced by ${T_t}_{t>0}$ itself. Our new approach is built on holomorphic functional calculus. Compared with all the previous, the new one is more powerful in several aspects: a) it permits us to go much further beyond the setting of symmetric submarkovian semigroups; b) it yields the optimal orders of growth on $p$ for most of the relevant constants; c) it gives new insights into the scalar case for which our orders of the best constants in the classical Littlewood-Paley-Stein inequalities for symmetric submarkovian semigroups are better than the previous by Stein. In particular, we resolve a problem of Naor and Young on the optimal order of the best constant in the above inequality when $X$ is of martingale cotype $q$ and ${P_t}_{t>0}$ is the classical Poisson and heat semigroups on $mathbb{R}^d$.
172 - Zhijie Fan , Michael Lacey , Ji Li 2021
We establish the necessary and sufficient conditions for those symbols $b$ on the Heisenberg group $mathbb H^{n}$ for which the commutator with the Riesz transform is of Schatten class. Our main result generalises classical results of Peller, Janson--Wolff and Rochberg--Semmes, which address the same question in the Euclidean setting. Moreover, the approach that we develop bypasses the use of Fourier analysis, and can be applied to characterise that the commutator is of the Schatten class in other settings beyond Euclidean.
88 - M. Dawson , G. Olafsson , 2018
On the unit ball B^n we consider the weighted Bergman spaces H_lambda and their Toeplitz operators with bounded symbols. It is known from our previous work that if a closed subgroup H of widetilde{SU(n,1)} has a multiplicity-free restriction for the holomorphic discrete series of $widetilde{SU(n,1)}$, then the family of Toeplitz operators with H-invariant symbols pairwise commute. In this work we consider the case of maximal abelian subgroups of widetilde{SU(n,1)} and provide a detailed proof of the pairwise commutativity of the corresponding Toeplitz operators. To achieve this we explicitly develop the restriction principle for each (conjugacy class of) maximal abelian subgroup and obtain the corresponding Segal-Bargmann transform. In particular, we obtain a multiplicity one result for the restriction of the holomorphic discrete series to all maximal abelian subgroups. We also observe that the Segal-Bargman transform is (up to a unitary transformation) a convolution operator against a function that we write down explicitly for each case. This can be used to obtain the explicit simultaneous diagonalization of Toeplitz operators whose symbols are invariant by one of these maximal abelian subgroups.
411 - Jordi Pau , Antti Perala 2018
We study a Toeplitz type operator $Q_mu$ between the holomorphic Hardy spaces $H^p$ and $H^q$ of the unit ball. Here the generating symbol $mu$ is assumed to a positive Borel measure. This kind of operator is related to many classical mappings acting on Hardy spaces, such as composition operators, the Volterra type integration operators and Carleson embeddings. We completely characterize the boundedness and compactness of $Q_mu:H^pto H^q$ for the full range $1<p,q<infty$; and also describe the membership in the Schatten classes of $H^2$. In the last section of the paper, we demonstrate the usefulness of $Q_mu$ through applications.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا