Do you want to publish a course? Click here

EviDR: Evidence-Emphasized Discrete Reasoning for Reasoning Machine Reading Comprehension

101   0   0.0 ( 0 )
 Added by Junwei Bao Doctor
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Reasoning machine reading comprehension (R-MRC) aims to answer complex questions that require discrete reasoning based on text. To support discrete reasoning, evidence, typically the concise textual fragments that describe question-related facts, including topic entities and attribute values, are crucial clues from question to answer. However, previous end-to-end methods that achieve state-of-the-art performance rarely solve the problem by paying enough emphasis on the modeling of evidence, missing the opportunity to further improve the models reasoning ability for R-MRC. To alleviate the above issue, in this paper, we propose an evidence-emphasized discrete reasoning approach (EviDR), in which sentence and clause level evidence is first detected based on distant supervision, and then used to drive a reasoning module implemented with a relational heterogeneous graph convolutional network to derive answers. Extensive experiments are conducted on DROP (discrete reasoning over paragraphs) dataset, and the results demonstrate the effectiveness of our proposed approach. In addition, qualitative analysis verifies the capability of the proposed evidence-emphasized discrete reasoning for R-MRC.



rate research

Read More

159 - Rujun Han , I-Hung Hsu , Jiao Sun 2021
Understanding how events are semantically related to each other is the essence of reading comprehension. Recent event-centric reading comprehension datasets focus mostly on event arguments or temporal relations. While these tasks partially evaluate machines ability of narrative understanding, human-like reading comprehension requires the capability to process event-based information beyond arguments and temporal reasoning. For example, to understand causality between events, we need to infer motivation or purpose; to establish event hierarchy, we need to understand the composition of events. To facilitate these tasks, we introduce ESTER, a comprehensive machine reading comprehension (MRC) dataset for Event Semantic Relation Reasoning. The dataset leverages natural language queries to reason about the five most common event semantic relations, provides more than 6K questions and captures 10.1K event relation pairs. Experimental results show that the current SOTA systems achieve 22.1%, 63.3%, and 83.5% for token-based exact-match, F1, and event-based HIT@1 scores, which are all significantly below human performances (36.0%, 79.6%, 100% respectively), highlighting our dataset as a challenging benchmark.
Machine reading is a fundamental task for testing the capability of natural language understanding, which is closely related to human cognition in many aspects. With the rising of deep learning techniques, algorithmic models rival human performances on simple QA, and thus increasingly challenging machine reading datasets have been proposed. Though various challenges such as evidence integration and commonsense knowledge have been integrated, one of the fundamental capabilities in human reading, namely logical reasoning, is not fully investigated. We build a comprehensive dataset, named LogiQA, which is sourced from expert-written questions for testing human Logical reasoning. It consists of 8,678 QA instances, covering multiple types of deductive reasoning. Results show that state-of-the-art neural models perform by far worse than human ceiling. Our dataset can also serve as a benchmark for reinvestigating logical AI under the deep learning NLP setting. The dataset is freely available at https://github.com/lgw863/LogiQA-dataset
Rapid progress has been made in the field of reading comprehension and question answering, where several systems have achieved human parity in some simplified settings. However, the performance of these models degrades significantly when they are applied to more realistic scenarios, such as answers involve various types, multiple text strings are correct answers, or discrete reasoning abilities are required. In this paper, we introduce the Multi-Type Multi-Span Network (MTMSN), a neural reading comprehension model that combines a multi-type answer predictor designed to support various answer types (e.g., span, count, negation, and arithmetic expression) with a multi-span extraction method for dynamically producing one or multiple text spans. In addition, an arithmetic expression reranking mechanism is proposed to rank expression candidates for further confirming the prediction. Experiments show that our model achieves 79.9 F1 on the DROP hidden test set, creating new state-of-the-art results. Source codefootnote{url{https://github.com/huminghao16/MTMSN}} is released to facilitate future work.
Recent powerful pre-trained language models have achieved remarkable performance on most of the popular datasets for reading comprehension. It is time to introduce more challenging datasets to push the development of this field towards more comprehensive reasoning of text. In this paper, we introduce a new Reading Comprehension dataset requiring logical reasoning (ReClor) extracted from standardized graduate admission examinations. As earlier studies suggest, human-annotated datasets usually contain biases, which are often exploited by models to achieve high accuracy without truly understanding the text. In order to comprehensively evaluate the logical reasoning ability of models on ReClor, we propose to identify biased data points and separate them into EASY set while the rest as HARD set. Empirical results show that state-of-the-art models have an outstanding ability to capture biases contained in the dataset with high accuracy on EASY set. However, they struggle on HARD set with poor performance near that of random guess, indicating more research is needed to essentially enhance the logical reasoning ability of current models.
102 - Hai Wang , Dian Yu , Kai Sun 2019
Remarkable success has been achieved in the last few years on some limited machine reading comprehension (MRC) tasks. However, it is still difficult to interpret the predictions of existing MRC models. In this paper, we focus on extracting evidence sentences that can explain or support the answers of multiple-choice MRC tasks, where the majority of answer options cannot be directly extracted from reference documents. Due to the lack of ground truth evidence sentence labels in most cases, we apply distant supervision to generate imperfect labels and then use them to train an evidence sentence extractor. To denoise the noisy labels, we apply a recently proposed deep probabilistic logic learning framework to incorporate both sentence-level and cross-sentence linguistic indicators for indirect supervision. We feed the extracted evidence sentences into existing MRC models and evaluate the end-to-end performance on three challenging multiple-choice MRC datasets: MultiRC, RACE, and DREAM, achieving comparable or better performance than the same models that take as input the full reference document. To the best of our knowledge, this is the first work extracting evidence sentences for multiple-choice MRC.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا