We present a detailed study of the 2019 outburst of the cataclysmic variable V1047 Cen, which hosted a classical nova eruption in 2005. The peculiar outburst occurred 14 years after the classical nova event, lasted for more than 400 days, and reached an amplitude of around 6 magnitudes in the optical. Early spectral follow-up revealed what could be a dwarf nova (accretion disk instability) outburst in a classical nova system. However, the outburst duration, high velocity ($>$2000 km s$^{-1}$) features in the optical line profiles, luminous optical emission, and the presence of prominent long-lasting radio emission, together suggest a phenomenon more exotic and energetic than a dwarf nova outburst. There are striking similarities between this V1047 Cen outburst and those of combination novae in classical symbiotic stars. We suggest that the outburst may have started as a dwarf nova that led to the accretion of a massive disk, which in turn triggered enhanced nuclear shell burning on the white dwarf and eventually led to generation of a wind/outflow. From optical photometry we find a bf{possible} orbital period of 8.36 days, which supports the combination nova scenario and makes the system an intermediate case between typical cataclysmic variables and classical symbiotic binaries. If true, such a phenomenon would be the first of its kind to occur in a system that has undergone a classical nova eruption and is intermediate between cataclysmic variables and symbiotic binaries.