Do you want to publish a course? Click here

On the small scale turbulent dynamo in the intracluster medium: A comparison to dynamo theory

75   0   0.0 ( 0 )
 Added by Ulrich Steinwandel
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present non-radiative, cosmological zoom-simulations of galaxy cluster formation with magnetic fields and (anisotropic) thermal conduction of one very massive galaxy cluster with a mass at redshift zero that corresponds to $M_mathrm{vir} sim 2 times 10^{15} M_{odot}$. We run the cluster on three resolution levels (1X, 10X, 25X), starting with an effective mass resolution of $2 times 10^8M_{odot}$, subsequently increasing the particle number to reach $4 times 10^6M_{odot}$. The maximum spatial resolution obtained in the simulations is limited by the gravitational softening reaching $epsilon=1.0$ kpc at the highest resolution level, allowing to resolve the hierarchical assembly of the structures in very fine detail. All simulations presented, have been carried out with the SPMHD-code Gadget-3 with a heavily updated SPMHD prescription. The primary focus is to investigate magnetic field amplification in the Intracluster Medium (ICM). We show that the main amplification mechanism is the small scale-turbulent-dynamo in the limit of reconnection diffusion. In our two highest resolution models we start to resolve the magnetic field amplification driven by this process and we explicitly quantify this with the magnetic power-spectra and the magnetic tension that limits the bending of the magnetic field lines consistent with dynamo theory. Furthermore, we investigate the $ abla cdot mathbf{B}=0$ constraint within our simulations and show that we achieve comparable results to state-of-the-art AMR or moving-mesh techniques, used in codes such as Enzo and Arepo. Our results show for the first time in a fully cosmological simulation of a galaxy cluster that dynamo action can be resolved in the framework of a modern Lagrangian magnetohydrodynamic (MHD) method, a study that is currently missing in the literature.



rate research

Read More

Faraday rotation and synchrotron emission from extragalactic radio sources give evidence for the presence of magnetic fields extending over ~Mpc scales. However, the origin of these fields remains elusive. With new high-resolution grid simulations we studied the growth of magnetic fields in a massive galaxy cluster that in several aspects is similar to the Coma cluster. We investigated models in which magnetic fields originate from primordial seed fields with comoving strengths of 0.1 nG at redshift z=30. The simulations show evidence of significant magnetic field amplification. At the best spatial resolution (3.95 kpc), we are able to resolve the scale where magnetic tension balances the bending of magnetic lines by turbulence. This allows us to observe the final growth stage of the small-scale dynamo. To our knowledge this is the first time that this is seen in cosmological simulations of the intracluster medium. Our mock observations of Faraday Rotation provide a good match to observations of the Coma cluster. However, the distribution of magnetic fields shows strong departures from a simple Maxwellian distribution, suggesting that the three-dimensional structure of magnetic fields in real clusters may be significantly different than what is usually assumed when inferring magnetic field values from rotation measure observations.
Supersonic turbulence is believed to be at the heart of star formation. We have performed smoothed particle magnetohydrodynamics (SPMHD) simulations of the small-scale dynamo amplification of magnetic fields in supersonic turbulence. The calculations use isothermal gas driven at rms velocity of Mach 10 so that conditions are representative of star-forming molecular clouds in the Milky Way. The growth of magnetic energy is followed for 10 orders in magnitude until it reaches saturation, a few percent of the kinetic energy. The results of our dynamo calculations are compared with results from grid-based methods, finding excellent agreement on their statistics and their qualitative behaviour. The simulations utilise the latest algorithmic developments we have developed, in particular, a new divergence cleaning approach to maintain the solenoidal constraint on the magnetic field and a method to reduce the numerical dissipation of the magnetic shock capturing scheme. We demonstrate that our divergence cleaning method may be used to achieve $ abla cdot {bf B}=0$ to machine precision, albeit at significant computational expense.
110 - Siyao Xu , Alex Lazarian 2021
Small-scale turbulent dynamo is responsible for the amplification of magnetic fields on scales smaller than the driving scale of turbulence in diverse astrophysical media. Most earlier dynamo theories concern the kinematic regime and small-scale magnetic field amplification. Here we review our recent progress in developing the theories for the nonlinear dynamo and the dynamo regime in a partially ionized plasma. The importance of reconnection diffusion of magnetic fields is identified for both the nonlinear dynamo and magnetic field amplification during gravitational contraction. For the dynamo in a partially ionized plasma, the coupling state between neutrals and ions and the ion-neutral collisional damping can significantly affect the dynamo behavior and the resulting magnetic field structure. We present both our analytical predictions and numerical tests with a two-fluid dynamo simulation on the dynamo features in this regime. In addition, to illustrate the astrophysical implications, we discuss several examples for the applications of the dynamo theory to studying magnetic field evolution in both preshock and postshock regions of supernova remnants, in weakly magnetized molecular clouds, during the (primordial) star formation, and during the first galaxy formation.
We perform a comparison between the smoothed particle magnetohydrodynamics (SPMHD) code, Phantom, and the Eulerian grid-based code, Flash, on the small-scale turbulent dynamo in driven, Mach 10 turbulence. We show, for the first time, that the exponential growth and saturation of an initially weak magnetic field via the small-scale dynamo can be successfully reproduced with SPMHD. The two codes agree on the behaviour of the magnetic energy spectra, the saturation level of magnetic energy, and the distribution of magnetic field strengths during the growth and saturation phases. The main difference is that the dynamo growth rate, and its dependence on resolution, differs between the codes, caused by differences in the numerical dissipation and shock capturing schemes leading to differences in the effective Prandtl number in Phantom and Flash.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا