No Arabic abstract
Assessing action quality is challenging due to the subtle differences between videos and large variations in scores. Most existing approaches tackle this problem by regressing a quality score from a single video, suffering a lot from the large inter-video score variations. In this paper, we show that the relations among videos can provide important clues for more accurate action quality assessment during both training and inference. Specifically, we reformulate the problem of action quality assessment as regressing the relative scores with reference to another video that has shared attributes (e.g., category and difficulty), instead of learning unreferenced scores. Following this formulation, we propose a new Contrastive Regression (CoRe) framework to learn the relative scores by pair-wise comparison, which highlights the differences between videos and guides the models to learn the key hints for assessment. In order to further exploit the relative information between two videos, we devise a group-aware regression tree to convert the conventional score regression into two easier sub-problems: coarse-to-fine classification and regression in small intervals. To demonstrate the effectiveness of CoRe, we conduct extensive experiments on three mainstream AQA datasets including AQA-7, MTL-AQA and JIGSAWS. Our approach outperforms previous methods by a large margin and establishes new state-of-the-art on all three benchmarks.
Assessing action quality from videos has attracted growing attention in recent years. Most existing approaches usually tackle this problem based on regression algorithms, which ignore the intrinsic ambiguity in the score labels caused by multiple judges or their subjective appraisals. To address this issue, we propose an uncertainty-aware score distribution learning (USDL) approach for action quality assessment (AQA). Specifically, we regard an action as an instance associated with a score distribution, which describes the probability of different evaluated scores. Moreover, under the circumstance where fine-grained score labels are available (e.g., difficulty degree of an action or multiple scores from different judges), we further devise a multi-path uncertainty-aware score distributions learning (MUSDL) method to explore the disentangled components of a score. We conduct experiments on three AQA datasets containing various Olympic actions and surgical activities, where our approaches set new state-of-the-arts under the Spearmans Rank Correlation.
Contrastive learning has been widely used to train transformer-based vision-language models for video-text alignment and multi-modal representation learning. This paper presents a new algorithm called Token-Aware Cascade contrastive learning (TACo) that improves contrastive learning using two novel techniques. The first is the token-aware contrastive loss which is computed by taking into account the syntactic classes of words. This is motivated by the observation that for a video-text pair, the content words in the text, such as nouns and verbs, are more likely to be aligned with the visual contents in the video than the function words. Second, a cascade sampling method is applied to generate a small set of hard negative examples for efficient loss estimation for multi-modal fusion layers. To validate the effectiveness of TACo, in our experiments we finetune pretrained models for a set of downstream tasks including text-video retrieval (YouCook2, MSR-VTT and ActivityNet), video action step localization (CrossTask), video action segmentation (COIN). The results show that our models attain consistent improvements across different experimental settings over previous methods, setting new state-of-the-art on three public text-video retrieval benchmarks of YouCook2, MSR-VTT and ActivityNet.
Unlike well-structured text, such as news reports and encyclopedia articles, dialogue content often comes from two or more interlocutors, exchanging information with each other. In such a scenario, the topic of a conversation can vary upon progression and the key information for a certain topic is often scattered across multiple utterances of different speakers, which poses challenges to abstractly summarize dialogues. To capture the various topic information of a conversation and outline salient facts for the captured topics, this work proposes two topic-aware contrastive learning objectives, namely coherence detection and sub-summary generation objectives, which are expected to implicitly model the topic change and handle information scattering challenges for the dialogue summarization task. The proposed contrastive objectives are framed as auxiliary tasks for the primary dialogue summarization task, united via an alternative parameter updating strategy. Extensive experiments on benchmark datasets demonstrate that the proposed simple method significantly outperforms strong baselines and achieves new state-of-the-art performance. The code and trained models are publicly available via href{https://github.com/Junpliu/ConDigSum}{https://github.com/Junpliu/ConDigSum}.
While image captioning has progressed rapidly, existing works focus mainly on describing single images. In this paper, we introduce a new task, context-aware group captioning, which aims to describe a group of target images in the context of another group of related reference images. Context-aware group captioning requires not only summarizing information from both the target and reference image group but also contrasting between them. To solve this problem, we propose a framework combining self-attention mechanism with contrastive feature construction to effectively summarize common information from each image group while capturing discriminative information between them. To build the dataset for this task, we propose to group the images and generate the group captions based on single image captions using scene graphs matching. Our datasets are constructed on top of the public Conceptual Captions dataset and our new Stock Captions dataset. Experiments on the two datasets show the effectiveness of our method on this new task. Related Datasets and code are released at https://lizw14.github.io/project/groupcap .
Endoscopy is a routine imaging technique used for both diagnosis and minimally invasive surgical treatment. Artifacts such as motion blur, bubbles, specular reflections, floating objects and pixel saturation impede the visual interpretation and the automated analysis of endoscopy videos. Given the widespread use of endoscopy in different clinical applications, we contend that the robust and reliable identification of such artifacts and the automated restoration of corrupted video frames is a fundamental medical imaging problem. Existing state-of-the-art methods only deal with the detection and restoration of selected artifacts. However, typically endoscopy videos contain numerous artifacts which motivates to establish a comprehensive solution. We propose a fully automatic framework that can: 1) detect and classify six different primary artifacts, 2) provide a quality score for each frame and 3) restore mildly corrupted frames. To detect different artifacts our framework exploits fast multi-scale, single stage convolutional neural network detector. We introduce a quality metric to assess frame quality and predict image restoration success. Generative adversarial networks with carefully chosen regularization are finally used to restore corrupted frames. Our detector yields the highest mean average precision (mAP at 5% threshold) of 49.0 and the lowest computational time of 88 ms allowing for accurate real-time processing. Our restoration models for blind deblurring, saturation correction and inpainting demonstrate significant improvements over previous methods. On a set of 10 test videos we show that our approach preserves an average of 68.7% which is 25% more frames than that retained from the raw videos.