A Self-Distillation Embedded Supervised Affinity Attention Model for Few-Shot Segmentation


Abstract in English

Few-shot semantic segmentation is a challenging task of predicting object categories in pixel-wise with only few annotated samples. However, existing approaches still face two main challenges. First, huge feature distinction between support and query images causes knowledge transferring barrier, which harms the segmentation performance. Second, few support samples cause unrepresentative of support features, hardly to guide high-quality query segmentation. To deal with the above two issues, we propose self-distillation embedded supervised affinity attention model (SD-AANet) to improve the performance of few-shot segmentation task. Specifically, the self-distillation guided prototype module (SDPM) extracts intrinsic prototype by self-distillation between support and query to capture representative features. The supervised affinity attention module (SAAM) adopts support ground truth to guide the production of high quality query attention map, which can learn affinity information to focus on whole area of query target. Extensive experiments prove that our SD-AANet significantly improves the performance comparing with existing methods. Comprehensive ablation experiments and visualization studies also show the significant effect of SDPM and SAAM for few-shot segmentation task. On benchmark datasets, PASCAL-5i and COCO-20i, our proposed SD-AANet both achieve state-of-the-art results. Our code will be publicly available soon.

Download