Do you want to publish a course? Click here

Reduction of the electroweak correlation in the PDF updating by using the forward-backward asymmetry of Drell-Yan process

91   0   0.0 ( 0 )
 Added by Yao Fu
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

This article proposes a novel method for unbiased PDF updating by using the forward-backward asymmetry $(A_{FB})$ in the Drell-Yan $pp rightarrow Z/gamma^{*} rightarrow ell^+ell^-$ process. The $A_{FB}$ spectrum, as a function of the dilepton mass, is not only governed by the electroweak (EW) fundamental parameter, i.e. the weak mixing angle $sin^2 theta_{W}$, but also sensitive to the parton distribution functions (PDFs). When performing simultaneous or iterative fittings for the PDF updating and EW parameter extraction with the same $A_{FB}$, the strong correlations between them may induce large bias into these two sectors. From our studies, it was found that the sensitivity of $A_{FB}$ on $sin^2 theta_{W}$ is dominated by its average value around the $Z$ pole region, while the shape (or gradient) of the $A_{FB}$ spectrum is insensitive to $sin^2 theta_{W}$ but highly sensitive to the PDF modeling. Accordingly, a new observable related to the gradient of the spectrum is defined, and demonstrated to have the capability of significantly reducing the correlation and potential bias between the PDF updating and electroweak measurement. Moreover, the well-defined observable will provide unique information on the sea-valence PDF ratios of the first generation quarks.



rate research

Read More

We study the impact of the inclusion of Neutral Current (NC) DY data from LHC mapped in the Forward-Backward Asymmetry ($A_{rm FB}$) observable on PDF uncertainties, using the open source platform texttt{xFitter}. We find that $A_{rm FB}$ enables new PDF sensitivity at current and future luminosity stages of LHC.
We investigate the impact of high-statistics Drell-Yan (DY) measurements at the LHC on the study of non-perturbative QCD effects from parton distribution functions (PDF). We present the results of a PDF profiling analysis based on the neutral-current DY forward-backward asymmetry, using the open source fit platform xFitter.
Non-perturbative QCD effects from Parton Distribution Functions (PDFs) may be constrained by using high-statistics Large Hadron Collider (LHC) data. Drell-Yan (DY) measurements in the Charged Current (CC) case provide one of the primary means to do this, in the form of the lepton charge asymmetry. We investigate here the impact of measurements in Neutral Current (NC) DY data mapped onto the Forward-Backward Asymmetry ($A_{rm FB}$) on PDF determinations, by using the open source fit platform {tt{xFitter}}. We demonstrate the potential impact of $A_{rm FB}$ data on PDF determinations and perform a thorough analysis of related uncertainties.
We analyze the Drell-Yan lepton pair production at forward rapidity at the Large Hadron Collider. Using the dipole framework for the computation of the cross section we find a significant suppression in comparison to the collinear factorization formula due to saturation effects in the dipole cross section. We develop a twist expansion in powers of Q_s^2/M^2 where Q_s is the saturation scale and M the invariant mass of the produced lepton pair. For the nominal LHC energy the leading twist description is sufficient down to masses of 6 GeV. Below that value the higher twist terms give a significant contribution.
We compute the nuclear corrections to the proton-deuteron Drell-Yan cross section for inclusive dilepton production, which, when combined with the proton-proton cross section, is used to determine the flavor asymmetry in the proton sea, dbar - ubar. In addition to nuclear smearing corrections that are known to be important at large values of the nucleons parton momentum fraction x_N, we also consider dynamical off-shell nucleon corrections associated with the modifications of the bound nucleon structure inside the deuteron, which we find to be significant at intermediate and large x_N values. We also provide estimates of the nuclear corrections at kinematics corresponding to existing and planned Drell-Yan experiments at Fermilab and J-PARC which aim to determine the dbar/ubar ratio for x < 0.6.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا