No Arabic abstract
In this paper, we develop a robust fast method for mobile-immobile variable-order (VO) time-fractional diffusion equations (tFDEs), superiorly handling the cases of small or vanishing lower bound of the VO function. The valid fast approximation of the VO Caputo fractional derivative is obtained using integration by parts and the exponential-sum-approximation method. Compared with the general direct method, the proposed algorithm ($RF$-$L1$ formula) reduces the acting memory from $mathcal{O}(n)$ to $mathcal{O}(log^2 n)$ and computational cost from $mathcal{O}(n^2)$ to $mathcal{O}(n log^2 n)$, respectively, where $n$ is the number of time levels. Then $RF$-$L1$ formula is applied to construct the fast finite difference scheme for the VO tFDEs, which sharp decreases the memory requirement and computational complexity. The error estimate for the proposed scheme is studied only under some assumptions of the VO function, coefficients, and the source term, but without any regularity assumption of the true solutions. Numerical experiments are presented to verify the effectiveness of the proposed method.
This paper presents a novel semi-analytical collocation method to solve multi-term variable-order time fractional partial differential equations (VOTFPDEs). In the proposed method it employs the Fourier series expansion for spatial discretization, which transforms the original multi-term VOTFPDEs into a sequence of multi-term variable-order time fractional ordinary differential equations (VOTFODEs). Then these VOTFODEs can be solved by using the recent-developed backward substitution method. Several numerical examples verify the accuracy and efficiency of the proposed numerical approach in the solution of multi-term VOTFPDEs.
The aim of this paper is to develop fast second-order accurate difference schemes for solving one- and two-dimensional time distributed-order and Riesz space fractional diffusion equations. We adopt the same measures for one- and two-dimensional problems as follows: we first transform the time distributed-order fractional diffusion problem into the multi-term time-space fractional diffusion problem with the composite trapezoid formula. Then, we propose a second-order accurate difference scheme based on the interpolation approximation on a special point to solve the resultant problem. Meanwhile, the unconditional stability and convergence of the new difference scheme in $L_2$-norm are proved. Furthermore, we find that the discretizations lead to a series of Toeplitz systems which can be efficiently solved by Krylov subspace methods with suitable circulant preconditioners. Finally, numerical results are presented to show the effectiveness of the proposed difference methods and demonstrate the fast convergence of our preconditioned Krylov subspace methods.
We consider the multidimensional space-fractional diffusion equations with spatially varying diffusivity and fractional order. Significant computational challenges are encountered when solving these equations due both to the kernel singularity in the fractional integral operator and to the resulting dense discretized operators, which quickly become prohibitively expensive to handle because of their memory and arithmetic complexities. In this work, we present a singularity-aware discretization scheme that regularizes the singular integrals through a singularity subtraction technique adapted to the spatial variability of diffusivity and fractional order. This regularization strategy is conveniently formulated as a sparse matrix correction that is added to the dense operator, and is applicable to different formulations of fractional diffusion equations. We also present a block low rank representation to handle the dense matrix representations, by exploiting the ability to approximate blocks of the resulting formally dense matrix by low rank factorizations. A Cholesky factorization solver operates directly on this representation using the low rank blocks as its atomic computational tiles, and achieves high performance on multicore hardware. Numerical results show that the singularity treatment is robust, substantially reduces discretization errors, and attains the first-order convergence rate allowed by the regularity of the solutions. They also show that considerable savings are obtained in storage ($O(N^{1.5})$) and computational cost ($O(N^2)$) compared to dense factorizations. This translates to orders-of-magnitude savings in memory and time on multi-dimensional problems, and shows that the proposed methods offer practical tools for tackling large nonlocal fractional diffusion simulations.
Time fractional PDEs have been used in many applications for modeling and simulations. Many of these applications are multiscale and contain high contrast variations in the media properties. It requires very small time step size to perform detailed computations. On the other hand, in the presence of small spatial grids, very small time step size is required for explicit methods. Explicit methods have many advantages as we discuss in the paper. In this paper, we propose a partial explicit method for time fractional PDEs. The approach solves the forward problem on a coarse computational grid, which is much larger than spatial heterogeneities, and requires only a few degrees of freedom to be treated implicitly. Via the construction of appropriate spaces and careful stability analysis, we can show that the time step can be chosen not to depend on the contrast or scale as the coarse mesh size. Thus, one can use larger time step size in an explicit approach. We present stability theory for our proposed method and our numerical results confirm the stability findings and demonstrate the performance of the approach.
We investigate diffusion equations with time-fractional derivatives of space-dependent variable order. We examine the well-posedness issue and prove that the space-dependent variable order coefficient is uniquely determined among other coefficients of these equations, by the knowledge of a suitable time-sequence of partial Dirichlet-to-Neumann maps.