Do you want to publish a course? Click here

Ultrahigh energy cosmic rays and high energy astrophysical neutrinos

84   0   0.0 ( 0 )
 Added by Marco Muzio
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We explore the joint implications of ultrahigh energy cosmic ray (UHECR) source environments -- constrained by the spectrum and composition of UHECRs -- and the observed high energy astrophysical neutrino spectrum. Acceleration mechanisms producing power-law CR spectra $propto E^{-2}$ are compatible with UHECR data, if CRs at high rigidities are in the quasi-ballistic diffusion regime as they escape their source environment. Both gas- and photon-dominated source environments are able to account for UHECR observations, however photon-dominated sources do so with a higher degree of accuracy. However, gas-dominated sources are in tension with current neutrino constraints. Accurate measurement of the neutrino flux at $sim 10$ PeV will provide crucial information on the viability of gas-dominated sources, as well as whether diffusive shock acceleration is consistent with UHECR observations. We also show that UHECR sources are able to give a good fit to the high energy portion of the astrophysical neutrino spectrum, above $sim$ PeV. This common origin of UHECRs and high energy astrophysical neutrinos is natural if air shower data is interpreted with the textsc{Sibyll2.3c} hadronic interaction model, which gives the best-fit to UHECRs and astrophysical neutrinos in the same part of parameter space, but not for EPOS-LHC.



rate research

Read More

The astrophysical neutrinos recently discovered by the IceCube neutrino telescope have the highest detected neutrino energies --- from TeV to PeV --- and travel the longest distances --- up to a few Gpc, the size of the observable Universe. These features make them naturally attractive probes of fundamental particle-physics properties, possibly tiny in size, at energy scales unreachable by any other means. The decades before the IceCube discovery saw many proposals of particle-physics studies in this direction. Today, those proposals have become a reality, in spite of prevalent astrophysical unknowns. We showcase examples of studying fundamental neutrino physics at these scales, including some of the most stringent tests of physics beyond the Standard Model.
The IceCube experiment recently detected the first flux of high-energy neutrinos in excess of atmospheric backgrounds. We examine whether these neutrinos originate from within the same extragalactic sources as ultrahigh-energy cosmic rays. Starting from rather general assumptions about spectra and flavors, we find that producing a neutrino flux at the requisite level through pion photoproduction leads to a flux of protons well below the cosmic-ray data at ~10^18 eV, where the composition is light, unless pions/muons cool before decaying. This suggests a dominant class of accelerator that allows for cosmic rays to escape without significant neutrino yields.
340 - Guenter Sigl 2012
This is a summary of a series of lectures on the current experimental and theoretical status of our understanding of origin and nature of cosmic radiation. Specific focus is put on ultra-high energy cosmic radiation above ~10^17 eV, including secondary neutral particles and in particular neutrinos. The most important open questions are related to the mass composition and sky distributions of these particles as well as on the location and nature of their sources. High energy neutrinos at GeV energies and above from extra-terrestrial sources have not yet been detected and experimental upper limits start to put strong contraints on the sources and the acceleration mechanism of very high energy cosmic rays.
We present a strong hint of a connection between high energy $gamma$-ray emitting blazars, very high energy neutrinos, and ultra high energy cosmic rays. We first identify potential hadronic sources by filtering $gamma$-ray emitters %from existing catalogs that are in spatial coincidence with the high energy neutrinos detected by IceCube. The neutrino filtered $gamma$-ray emitters are then correlated with the ultra high energy cosmic rays from the Pierre Auger Observatory and the Telescope Array by scanning in $gamma$-ray flux ($F_{gamma}$) and angular separation ($theta$) between sources and cosmic rays. A maximal excess of 80 cosmic rays (42.5 expected) is found at $thetaleq10^{circ}$ from the neutrino filtered $gamma$-ray emitters selected from the second hard {it Fermi}-LAT catalogue (2FHL) and for $F_gammaleft(>50:mathrm{GeV}right)geq1.8times10^{-11}:mathrm{ph},mathrm{cm}^{-2},mathrm{s}^{-1}$. The probability for this to happen is $2.4 times 10^{-5}$, which translates to $sim 2.4 times 10^{-3}$ after compensation for all the considered trials. No excess of cosmic rays is instead observed for the complement sample of $gamma$-ray emitters (i.e. not in spatial connection with IceCube neutrinos). A likelihood ratio test comparing the connection between the neutrino filtered and the complement source samples with the cosmic rays favours a connection between neutrino filtered emitters and cosmic rays with a probability of $sim1.8times10^{-3}$ ($2.9sigma)$ after compensation for all the considered trials. The neutrino filtered $gamma$-ray sources that make up the cosmic rays excess are blazars of the high synchrotron peak type. More statistics is needed to further investigate these sources as candidate cosmic ray and neutrino emitters.
This is a review of the most resent results from the investigation of the Ultrahigh Energy Cosmic Rays, particles of energy exceeding 10$^{18}$ eV. After a general introduction to the topic and a brief review of the lower energy cosmic rays and the detection methods, the two most recent experiments, the High Resolution Flys Eye (HiRes) and the Southern Auger Observatory are described. We then concentrate on the results from these two experiments on the cosmic ray energy spectrum, the chemical composition of these cosmic rays and on the searches for their sources. We conclude with a brief analysis of the controversies in these results and the projects in development and construction that can help solve the remaining problems with these particles.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا