Do you want to publish a course? Click here

Light and strange hadron production and anisotropic flow measurement in Au+Au collisions at ${sqrt{s_{rm NN}} = rm{3,GeV}}$ from STAR

81   0   0.0 ( 0 )
 Added by Guannan Xie
 Publication date 2021
  fields
and research's language is English
 Authors Guannan Xie




Ask ChatGPT about the research

In this proceeding, we present on our first measurements of identified particle ($pi$, $K$, $p$, $K_{s}^{0}$, $Lambda$, $phi$, $Xi^{-}$) production and anisotropic flow ($v_{1}$, $v_{2}$) in Au+Au collisions at ${sqrt{s_{rm NN}} = rm{3,GeV}}$. Various models including thermal and transport model calculations are compared to data, these results imply that the matter produced in the 3 GeV Au+Au collisions is considerably different from that at higher energies.



rate research

Read More

83 - Guannan Xie 2018
We report on the measurements of production of various charmed hadrons in Au+Au collisions at $sqrt{s_{rm{NN}}}$ = 200 GeV (including $D^{0}(overline{D^{0}})$ and $Lambda_{c}^{pm}$) obtained via topological reconstruction, utilizing the Heavy Flavor Tracker at STAR. Precise results on the $D^{0}$ yields from the 2014 data are reported for a wide transverse momentum range down to 0 in various centrality bins. With the high-statistics data collected in 2014 and 2016, and the usage of a supervised machine learning algorithm for signal-to-background separation, the first measurement of the centrality and transverse momentum dependences of $Lambda_{c}^{pm}$ production is shown. Finally, the total charm quark cross section extracted from these measurements in Au+Au collisions at $sqrt{s_{rm{NN}}}$ = 200 GeV is presented.
We report on the first measurement of the charmed baryon $Lambda_c^{pm}$ production at midrapidity ($|y|$ $<$ 1) in Au+Au collisions at $sqrt{s_{NN}}$ = 200 GeV collected by the STAR experiment at the Relativistic Heavy Ion Collider. The $Lambda_c$/$D^0$ (denoting ($Lambda_c^++Lambda_c^-$)/($D^0+bar{D^0}$)) yield ratio is measured to be 1.08 $pm$ 0.16 (stat.) $pm$ 0.26 (sys.) in the 0--20% most central Au+Au collisions for the transverse momentum ($p_T$) range 3 $<$ $p_T$ $<$ 6 GeV/$c$. This is significantly larger than the PYTHIA model calculations for $p+p$ collisions. The measured $Lambda_c$/$D^0$ ratio, as a function of $p_T$ and collision centrality, is comparable to the baryon-to-meson ratios for light and strange hadrons in Au+Au collisions. Model calculations including coalescence hadronization for charmed baryon and meson formation reproduce the features of our measured $Lambda_c$/$D^0$ ratio.
We report on the first multi-differential measurement of $phi$ meson and $Xi^{-}$ hyperon production as well as the $phi/K^-$ and $phi/Xi^-$ ratio in Au+Au collisions at ${sqrt{s_{rm NN}} = rm{3,GeV}}$ with the STAR experiment under its fixed targ et configuration at RHIC. $phi$ mesons and $Xi^{-}$ hyperons are measured through their hadronic decay channels, $phirightarrow K^+K^-$ and $Xi^-rightarrow Lambdapi^-$. The transverse kinetic energy spectra of $K^-$, $phi$ and $Xi^{-}$ are presented in different centrality and rapidity intervals. The total production yields and the ratios within a $4pi$ coverage are calculated and compared to thermal model predictions. A calculation within the grand canonical ensemble framework shows a clear discrepancy from our measurement. Our data favor the canonical ensemble approach employing local strangeness conservation with a small strangeness correlation length ($r_c leq 4.2$ fm) in 0--10% central Au+Au collisions at ${sqrt{s_{rm NN}} = rm{3,GeV}}$.
We report the STAR measurements of dielectron ($e^+e^-$) production at midrapidity ($|y_{ee}|<$1) in Au+Au collisions at $sqrt{s_{rm NN}}$ = 200,GeV. The measurements are evaluated in different invariant mass regions with a focus on 0.30-0.76 ($rho$-like), 0.76-0.80 ($omega$-like), and 0.98-1.05 ($phi$-like) GeV/$c^{2}$. The spectrum in the $omega$-like and $phi$-like regions can be well described by the hadronic cocktail simulation. In the $rho$-like region, however, the vacuum $rho$ spectral function cannot describe the shape of the dielectron excess. In this range, an enhancement of 1.77$pm$0.11(stat.)$pm$0.24(sys.)$pm$0.33(cocktail) is determined with respect to the hadronic cocktail simulation that excludes the $rho$ meson. The excess yield in the $rho$-like region increases with the number of collision participants faster than the $omega$ and $phi$ yields. Theoretical models with broadened $rho$ contributions through interactions with constituents in the hot QCD medium provide a consistent description of the dilepton mass spectra for the measurement presented here and the earlier data at the Super Proton Synchrotron energies.
We report a new measurement of $D^0$-meson production at mid-rapidity ($|y|$,$<$,1) in Au+Au collisions at ${sqrt{s_{rm NN}} = rm{200,GeV}}$ utilizing the Heavy Flavor Tracker, a high resolution silicon detector at the STAR experiment. Invariant yields of $D^0$-mesons with transverse momentum $p_{T}$ $lesssim 9$,GeV/$c$ are reported in various centrality bins (0--10%, 10--20%, 20--40%, 40--60% and 60--80%). Blast-Wave thermal models are used to fit the $D^0$-meson $p_{T}$ spectra to study $D^0$ hadron kinetic freeze-out properties. The average radial flow velocity extracted from the fit is considerably smaller than that of light hadrons ($pi,K$ and $p$), but comparable to that of hadrons containing multiple strange quarks ($phi,Xi^-$), indicating that $D^0$ mesons kinetically decouple from the system earlier than light hadrons. The calculated $D^0$ nuclear modification factors re-affirm that charm quarks suffer large amount of energy loss in the medium, similar to those of light quarks for $p_{T}$,$>$,4,GeV/$c$ in central 0--10% Au+Au collisions. At low $p_{T}$, the nuclear modification factors show a characteristic structure qualitatively consistent with the expectation from model predictions that charm quarks gain sizable collective motion during the medium evolution. The improved measurements are expected to offer new constraints to model calculations and help gain further insights into the hot and dense medium created in these collisions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا