We study the quantum evolution of a non-Hermitian qubit realized as a sub-manifold of a dissipative superconducting transmon circuit. Real-time tuning of the system parameters results in non-reciprocal quantum state transfer associated with proximity to the exceptional points of the effective Floquet Hamiltonian. We observe chiral geometric phases accumulated under state transport, verifying the quantum coherent nature of the evolution in the complex energy landscape and distinguishing between coherent and incoherent effects associated with exceptional point encircling. Our work demonstrates an entirely new method for control over quantum state vectors, highlighting new facets of quantum bath engineering enabled through time-periodic (Floquet) non-Hermitian control.
Exceptional points (EPs) are exotic degeneracies of non-Hermitian systems, where the eigenvalues and the corresponding eigenvectors simultaneously coalesce in parameter space, and these degeneracies are sensitive to tiny perturbations on the system. Here we report an experimental observation of the EP in a hybrid quantum system consisting of dense nitrogen (P1) centers in diamond coupled to a coplanar-waveguide resonator. These P1 centers can be divided into three subensembles of spins, and cross relaxation occurs among them. As a new method to demonstrate this EP, we pump a given spin subensemble with a drive field to tune the magnon-photon coupling in a wide range. We observe the EP in the middle spin subensemble coupled to the resonator mode, irrespective of which spin subensemble is actually driven. This robustness of the EP against pumping reveals the key role of the cross relaxation in P1 centers. It offers a novel way to convincingly prove the existence of the cross-relaxation effect via the EP.
Successful implementation of a fault-tolerant quantum computation on a system of qubits places severe demands on the hardware used to control the many-qubit state. It is known that an accuracy threshold $P_{a}$ exists for any quantum gate that is to be used in such a computation. Specifically, the error probability $P_{e}$ for such a gate must fall below the accuracy threshold: $P_{e} < P_{a}$. Estimates of $P_{a}$ vary widely, though $P_{a}sim 10^{-4}$ has emerged as a challenging target for hardware designers. In this paper we present a theoretical framework based on neighboring optimal control that takes as input a good quantum gate and returns a new gate with better performance. We illustrate this approach by applying it to all gates in a universal set of quantum gates produced using non-adiabatic rapid passage that has appeared in the literature. Performance improvements are substantial, both for ideal and non-ideal controls. Under suitable conditions detailed below, all gate error probabilities fall well below the target threshold of $10^{-4}$.
Measurement and estimation of parameters are essential for science and engineering, where one of the main quests is to find systematic schemes that can achieve high precision. While conventional schemes for quantum parameter estimation focus on the optimization of the probe states and measurements, it has been recently realized that control during the evolution can significantly improve the precision. The identification of optimal controls, however, is often computationally demanding, as typically the optimal controls depend on the value of the parameter which then needs to be re-calculated after the update of the estimation in each iteration. Here we show that reinforcement learning provides an efficient way to identify the controls that can be employed to improve the precision. We also demonstrate that reinforcement learning is highly generalizable, namely the neural network trained under one particular value of the parameter can work for different values within a broad range. These desired features make reinforcement learning an efficient alternative to conventional optimal quantum control methods.
Magnon-polaritons are hybrid light-matter quasiparticles originating from the strong coupling between magnons and photons. They have emerged as a potential candidate for implementing quantum transducers and memories. Owing to the dampings of both photons and magnons, the polaritons have limited lifetimes. However, stationary magnon-polariton states can be reached by a dynamical balance between pumping and losses, so the intrinsical nonequilibrium system may be described by a non-Hermitian Hamiltonian. Here we design a tunable cavity quantum electrodynamics system with a small ferromagnetic sphere in a microwave cavity and engineer the dissipations of photons and magnons to create cavity magnon-polaritons which have non-Hermitian spectral degeneracies. By tuning the magnon-photon coupling strength, we observe the polaritonic coherent perfect absorption and demonstrate the phase transition at the exceptional point. Our experiment offers a novel macroscopic quantum platform to explore the non-Hermitian physics of the cavity magnon-polaritons.
We propose to realize the pseudo-Hermiticity in a cavity magnonics system consisting of the Kittel modes in two small yttrium-iron-garnet spheres coupled to a microwave cavity mode. The effective gain of the cavity can be achieved using the coherent perfect absorption of the two input fields fed into the cavity. With certain constraints of the parameters, the Hamiltonian of the system has the pseudo-Hermiticity and its eigenvalues can be either all real or one real and other two constituting a complex-conjugate pair. By varying the coupling strengths between the two Kittel modes and the cavity mode, we find the existence of the third-order exceptional point in the parameter space, in addition to the usual second-order exceptional point existing in the system with parity-time symmetry. Also, we show that these exceptional points can be demonstrated by measuring the output spectrum of the cavity.