Do you want to publish a course? Click here

Quantum Gates Robust to Secular Amplitude Drifts

62   0   0.0 ( 0 )
 Added by Qile David Su
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Quantum gates are typically vulnerable to imperfections in the classical control fields applied to physical qubits to drive the gates. One approach to reduce this source of error is to break the gate into parts, known as textit{composite pulses} (CPs), that typically leverage the constancy of the error over time to mitigate its impact on gate fidelity. Here we extend this technique to suppress textit{secular drifts} in Rabi frequency by regarding them as sums of textit{power-law drifts} whose first-order effects on over- or under-rotation of the state vector add linearly. We show that composite pulses that suppress the power-law drifts $t^p$ for all $p leq n$ are also high-pass filters of textit{filter order} $n+1$ cite{ball_walsh-synthesized_2015}. We present sequences that satisfy our proposed textit{power law amplitude} $text{PLA}(n)$ criteria, obtained with this technique, and compare their simulated performance under time-dependent amplitude errors to some traditional composite pulse sequences. We find that there is a range of noise frequencies for which the $text{PLA}(n)$ sequences provide more error suppression than the traditional sequences, but in the low frequency limit, non-linear effects become more important for gate fidelity than frequency roll-off. As a result, the previously known $F_1$ sequence, which is one of the two solutions to the $text{PLA}(1)$ criteria and furnishes suppression of both linear secular drift and the first order nonlinear effects, is a better noise filter than any of the other $text{PLA}(n)$ sequences in the low frequency limit.

rate research

Read More

Dephasing -- phase randomization of a quantum superposition state -- is a major obstacle for the realization of high fidelity quantum logic operations. Here, we implement a two-qubit Controlled-NOT gate using dynamical decoupling (DD), despite the gate time being more than one order of magnitude longer than the intrinsic coherence time of the system. For realizing this universal conditional quantum gate, we have devised a concatenated DD sequence that ensures robustness against imperfections of DD pulses that otherwise may destroy quantum information or interfere with gate dynamics. We compare its performance with three other types of DD sequences. These experiments are carried out using a well-controlled prototype quantum system -- trapped atomic ions coupled by an effective spin-spin interaction. The scheme for protecting conditional quantum gates demonstrated here is applicable to other physical systems, such as nitrogen vacancy centers, solid state nuclear magnetic resonance, and circuit quantum electrodynamics.
Significant experimental advances in single-electron silicon spin qubits have opened the possibility of realizing long-range entangling gates mediated by microwave photons. Recently proposed iSWAP gates, however, require tuning qubit energies into resonance and have limited fidelity due to charge noise. We present a novel photon-mediated cross-resonance gate that is consistent with realistic experimental capabilities and requires no resonant tuning. Furthermore, we propose gate sequences capable of suppressing errors due to quasistatic noise for both the cross-resonance and iSWAP gates.
The presence of decoherence in quantum computers necessitates the suppression of noise. Dynamically corrected gates via specially designed control pulses offer a path forward, but hardware-specific experimental constraints can cause complications. Here, we present a widely applicable method for obtaining smooth pulses which is not based on a sampling approach and does not need any assumptions with regards to the underlying statistics of the experimental noise. We demonstrate the capability of our approach by finding smooth shapes which suppress the effects of noise within the logical subspace as well as leakage out of that subspace.
Ultracold atoms in optical lattices are an important platform for quantum information science, lending itself naturally to quantum simulation of many-body physics and providing a possible path towards a scalable quantum computer. To realize its full potential, atoms at individual lattice sites must be accessible to quantum control and measurement. This challenge has so far been met with a combination of high-resolution microscopes and resonance addressing that have enabled both site-resolved imaging and spin-flips. Here we show that methods borrowed from the field of inhomogeneous control can greatly increase the performance of resonance addressing in optical lattices, allowing us to target arbitrary single-qubit gates on desired sites, with minimal crosstalk to neighboring sites and greatly improved robustness against uncertainty in the lattice position. We further demonstrate the simultaneous implementation of different gates at adjacent sites with a single global control waveform. Coherence is verified through two-pulse Ramsey interrogation, and randomized benchmarking is used to measure an average gate fidelity of ~95%. Our control-based approach to reduce crosstalk and increase robustness is broadly applicable in optical lattices irrespective of geometry, and may be useful also on other platforms for quantum information processing, such as ion traps and nitrogen-vacancy centers in diamond.
We show that with adiabatic passage, one can reliably drive two-photon optical transitions between the ground states and interacting Rydberg states in a pair of atoms. For finite Rydberg interaction strengths a new adiabatic pathway towards the doubly Rydberg excited state is identified when a constant detuning is applied with respect to an intermediate optically excited level. The Rydberg interaction among the excited atoms provides a phase that may be used to implement quantum gate operations on atomic ground state qubits.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا