Do you want to publish a course? Click here

Measurement of Muon-induced Neutron Production at China Jinping Underground Laboratory

129   0   0.0 ( 0 )
 Added by Lin Zhao
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

Solar-, geo-, and supernova neutrino experiments are subject to muon-induced radioactive background. China Jinping Underground Laboratory (CJPL), with its unique advantage of 2400 m rock coverage and distance from nuclear power plants, is ideal for MeV-scale neutrino experiments. Using a 1-ton prototype detector of the Jinping Neutrino Experiment (JNE), we detected 343 high-energy cosmic-ray muons and (6.24$ pm $3.66) muon-induced neutrons from an 820.28-day dataset at the first phase of CJPL (CJPL-I). Based on the muon induced neutrons, we measured the corresponding neutron yield in liquid scintillator to be $(3.13 pm 1.84_{rm stat.}pm 0.70_{rm syst.})times 10^{-4}mu ^{-1}rm g^{-1}cm^{2}$ at an average muon energy of 340 GeV. This study provides the first measurement for this kind of neutron background at CJPL. A global fit including this measurement shows a power-law coefficient of (0.75$ pm $0.02) for the dependence of the neutron yield at liquid scintillator on muon energy.



rate research

Read More

China Jinping Underground Laboratory (CJPL) is ideal for studying solar-, geo-, and supernova neutrinos. A precise measurement of the cosmic-ray background would play an essential role in proceeding with the R&D research for these MeV-scale neutrino experiments. Using a 1-ton prototype detector for the Jinping Neutrino Experiment (JNE), we detected 264 high-energy muon events from a 645.2-day dataset at the first phase of CJPL (CJPL-I), reconstructed their directions, and measured the cosmic-ray muon flux to be $(3.53pm0.22_{text{stat.}}pm0.07_{text{sys.}})times10^{-10}$ cm$^{-2}$s$^{-1}$. The observed angular distributions indicate the leakage of cosmic-ray muon background and agree with the simulation accounting for Jinping mountains terrain. A survey of muon fluxes at different laboratory locations situated under mountains and below mine shaft indicated that the former is generally a factor of $(4pm2)$ larger than the latter with the same vertical overburden. This study provides a convenient back-of-the-envelope estimation for muon flux of an underground experiment.
129 - Qiang Du 2017
We report on the measurements of the fluxes and spectra of the environmental fast neutron background at the China Jinping Underground Laboratory (CJPL) with a rock overburden of about 6700 meters water equivalent, using a liquid scintillator detector doped with 0.5% gadolinium. The signature of a prompt nuclear recoil followed by a delayed high energy $gamma$-ray cascade is used to identify neutron events. The large energy deposition of the delayed $gamma$-rays from the $(n, gamma)$ reaction on gadolinium, together with the excellent n-$gamma$ discrimination capability provides a powerful background suppression which allows the measurement of a low intensity neutron flux. The neutron flux of $(1.51pm0.03(stat.)pm0.10(syst.))times10^{-7}$ cm$^{-2}$s$^{-1}$ in the energy range of 1 -- 10 MeV in the Hall A of CJPL was measured based on 356 days of data. In the same energy region, measurement with the same detector placed in a one meter thick polyethylene room gives a significantly lower flux of $(4.9pm0.9(stat.)pm0.5(syst.))times10^{-9}$ cm$^{-2}$s$^{-1}$ with 174 days of data. This represents a measurement of the lowest environmental fast neutron background among the underground laboratories in the world, prior to additional experiment-specific attenuation. Additionally, the fast neutron spectra both in the Hall A and the polyethylene room were reconstructed with the help of GEANT4 simulation.
The China Jinping Underground Laboratory, inaugurated in 2010, is an underground research facility with the deepest rock overburden and largest space by volume in the world. The first-generation science programs include dark matter searches conducted by the CDEX and PandaX experiments. These activities are complemented by measurements of ambient radioactivity and installation of low-background counting systems. Phase II of the facility is being constructed, and its potential research projects are being formulated. In this review, we discuss the history, key features, results, and status of this facility and its experimental programs, as well as their future evolution and plans.
China JinPing underground Laboratory (CJPL) is the deepest underground laboratory presently running in the world. In such a deep underground laboratory, the cosmic ray flux is a very important and necessary parameter for rare event experiments. A plastic scintillator telescope system has been set up to measure the cosmic ray flux. The performance of the telescope system has been studied using the cosmic ray on the ground laboratory near CJPL. Based on the underground experimental data taken from November 2010 to December 2011 in CJPL, which has effective live time of 171 days, the cosmic ray muon flux in CJPL is measured to be (2.0+-0.4)*10^(-10)/(cm^2)/(s). The ultra-low cosmic ray background guarantees CJPLs ideal environment for dark matter experiment.
133 - S.K. Liu , Q. Yue , K.J. Kang 2016
We report the results of searches for solar axions and galactic dark matter axions or axion-like particles with CDEX-1 experiment at the China Jinping Underground Laboratory, using 335.6 kg-days of data from a p-type point-contact germanium detector. The data are compatible with the background model and no excess signals are observed. Limits of solar axions on the model independent coupling $g_{Ae}<2.5times10^{-11}$ from Compton, bremsstrahlung, atomic-recombination and deexcitation channel and $g^{text{eff}}_{AN}times g_{Ae}<6.1times10^{-17}$ from $^{57}$Fe M1 transition at 90 % confidence level are derived. Within the framework of the DFSZ and KSVZ models, our results exclude the axion mass heavier than 0.9 eV/c$^{2}$ and 173 eV/c$^{2}$, respectively. The derived constraints for dark matter axions below 1 keV improves over the previous results.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا