No Arabic abstract
The elementary CuO2 plane sustaining cuprate high-temperature superconductivity occurs typically at the base of a periodic array of edge-sharing CuO5 pyramids (Fig 1a). Virtual transitions of electrons between adjacent planar Cu and O atoms, occurring at a rate $t/{hbar}$ and across the charge-transfer energy gap E, generate superexchange spin-spin interactions of energy $Japprox4t^4/E^3$ in an antiferromagnetic correlated-insulator state1. Hole doping the CuO2 plane disrupts this magnetic order while perhaps retaining superexchange interactions, thus motivating a hypothesis of spin-singlet electron-pair formation at energy scale J as the mechanism of high-temperature superconductivity. Although the response of the superconductors electron-pair wavefunction $Psiequiv<c_uparrow c_downarrow>$ to alterations in E should provide a direct test of such hypotheses, measurements have proven impracticable. Focus has turned instead to the distance ${delta}$ between each Cu atom and the O atom at the apex of its CuO5 pyramid. Varying ${delta}$ should alter the Coulomb potential at the planar Cu and O atoms, modifying E and thus J, and thereby controlling ${Psi}$ in a predictable manner. Here we implement atomic-scale imaging of E and ${Psi}$, both as a function of the periodic modulation in ${delta}$ that occurs naturally in $Bi_2Sr_2CaCu_2O_{8+x}$. We demonstrate that the responses of E and ${Psi}$ to varying ${delta}$, and crucially those of ${Psi}$ to the varying E, conform to theoretical predictions. These data provide direct atomic-scale verification that charge-transfer superexchange is key to the electron-pairing mechanism in the hole-doped cuprate superconductor ${Bi_2Sr_2CaCu_2O_{8+x}}$.
Developing a theory of high-temperature superconductivity in copper oxides is one of the outstanding problems in physics. It is a challenge that has defeated theoretical physicists for more than twenty years. Attempts to understand this problem are hindered by the subtle interplay among a few mechanisms and the presence of several nearly degenerate and competing phases in these systems. Here we present some crucial experiments that place essential constraints on the pairing mechanism of high-temperature superconductivity. The observed unconventional oxygenisotope effects in cuprates have clearly shown strong electron-phonon interactions and the existence of polarons and/or bipolarons. Angle-resolved photoemission and tunneling spectra have provided direct evidence for strong coupling to multiple-phonon modes. In contrast, these spectra do not show strong coupling features expected for magnetic resonance modes. Angle-resolved photoemission spectra and the oxygen-isotope effect on the antiferromagnetic exchange energy J in undoped parent compounds consistently show that the polaron binding energy is about 2 eV, which is over one order of magnitude larger than J = 0.14 eV. The normal-state spin-susceptibility data of holedoped cuprates indicate that intersite bipolarons are the dominant charge carriers in the underdoped region while the component of Fermi-liquid-like polarons is dominant in the overdoped region. All the experiments to test the gap or order-parameter symmetry consistently demonstrate that the intrinsic gap (pairing) symmetry for the Fermi-liquid-like component is anisotropic s-wave and the order-parameter symmetry of the Bose-Einstein condensation of bipolarons is d-wave.
A great variety of novel phenomena occur when two-dimensional materials, such as graphene or transition metal dichalcogenides, are assembled into bilayers with a twist between individual layers. As a new application of this paradigm, we consider structures composed of two monolayer-thin $d$-wave superconductors with a twist angle $theta$ that can be realized by mechanically exfoliating van der Waals-bonded high-$T_c$ copper oxide materials, such as Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$. On the basis of symmetry arguments and detailed microscopic modelling, we predict that for a range of twist angles in the vicinity of $45^{rm o}$, such bilayers form a robust, fully gapped topological phase with spontaneously broken time-reversal symmetry and protected chiral Majorana edge modes. When $thetaapprox 45^{rm o}$, the topological phase sets in at temperatures close to the bulk $T_csimeq 90$ K, thus furnishing a long sought realization of a true high-temperature topological superconductor.
The evolution of electronic (spin and charge) excitations upon carrier doping is an extremely important issue in superconducting layered cuprates and the knowledge of its asymmetry between electron- and hole-dopings is still fragmentary. Here we combine x-ray and neutron inelastic scattering measurements to track the doping dependence of both spin and charge excitations in electron-doped materials. Copper L3 resonant inelastic x-ray scattering spectra show that magnetic excitations shift to higher energy upon doping. Their dispersion becomes steeper near the magnetic zone center and deeply mix with charge excitations, indicating that electrons acquire a highly itinerant character in the doped metallic state. Moreover, above the magnetic excitations, an additional dispersing feature is observed near the {Gamma}-point, and we ascribe it to particle-hole charge excitations. These properties are in stark contrast with the more localized spin-excitations (paramagnons) recently observed in hole-doped compounds even at high doping-levels.
To identify the microscopic mechanism of heavy-fermion Cooper pairing is an unresolved challenge in quantum matter studies; it may also relate closely to finding the pairing mechanism of high temperature superconductivity. Magnetically mediated Cooper pairing has long been the conjectured basis of heavy-fermion superconductivity but no direct verification of this hypothesis was achievable. Here, we use a novel approach based on precision measurements of the heavy-fermion band structure using quasiparticle interference (QPI) imaging, to reveal quantitatively the momentum-space (k-space) structure of the f-electron magnetic interactions of CeCoIn5. Then, by solving the superconducting gap equations on the two heavy-fermion bands $E_k^{alpha,beta}$ with these magnetic interactions as mediators of the Cooper pairing, we derive a series of quantitative predictions about the superconductive state. The agreement found between these diverse predictions and the measured characteristics of superconducting CeCoIn5, then provides direct evidence that the heavy-fermion Cooper pairing is indeed mediated by the f-electron magnetism.
In our recent paper entitled Pairing mechanism of high-temperature superconductivity: Experimental constraints (to be published in Physica Scripta, arXiv:1012.2368), we review some crucial experiments that place strong constraints on the microscopic pairing mechanism of high-temperature superconductivity in cuprates. In particular, we show that phonons rather than spin-fluctuation play a predominant role in the microscopic pairing mechanism. We further show that the intrinsic pairing symmetry in the bulk is not d-wave, but extended s-wave (having eight line nodes) in hole-doped cuprates and nodeless s-wave in electron-doped cuprates. In contrast, the author of the Comment (to be published in Physica Scripta) argues that our conclusions are unconvincing and even misleading. In response to the criticisms in the Comment, we further show that our conclusions are well supported by experiments and his criticisms are lack of scientific ground.