We present observations of ASASSN-20hx, a nearby ambiguous nuclear transient (ANT) discovered in NGC 6297 by the All-Sky Automated Survey for Supernovae (ASAS-SN). We observed ASASSN-20hx from $-$30 to 275 days relative to peak UV/optical emission using high-cadence, multi-wavelength spectroscopy and photometry. From Transiting Exoplanet Survey Satellite (TESS) data, we determine that the ANT began to brighten on 2020 June 23.3 with a linear rise in flux for at least the first week. ASASSN-20hx peaked in the UV/optical 29.5 days later on 2020 July 22.8 (MJD = 59052.8) at a bolometric luminosity of $L = (3.15 pm 0.04) times 10^{43}$ erg s$^{-1}$. The subsequent decline is slower than any TDE observed to date and consistent with many other ANTs. Compared to an archival X-ray detection, the X-ray luminosity of ASASSN-20hx increased by an order of magnitude to $L_{x} sim 1.5 times 10^{42}$ erg s$^{-1}$ and then slowly declined over time. The X-ray emission is well-fit by a power law with a photon index of $Gamma sim 2.3 - 2.6$. Both the optical and near infrared spectra of ASASSN-20hx lack emission lines, unusual for any known class of nuclear transient. While ASASSN-20hx has some characteristics seen in both tidal disruption events (TDEs) and active galactic nuclei (AGNs), it cannot be definitively classified with current data.