Do you want to publish a course? Click here

Quantum logical entropy: fundamentals and general properties

90   0   0.0 ( 0 )
 Added by Ismael L. Paiva
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Logical entropy gives a measure, in the sense of measure theory, of the distinctions of a given partition of a set, an idea that can be naturally generalized to classical probability distributions. Here, we analyze how fundamental concepts of this entropy and other related definitions can be applied to the study of quantum systems, leading to the introduction of the quantum logical entropy. Moreover, we prove several properties of this entropy for generic density matrices that may be relevant to various areas of quantum mechanics and quantum information. Furthermore, we extend the notion of quantum logical entropy to post-selected systems.



rate research

Read More

The property of superadditivity of the quantum relative entropy states that, in a bipartite system $mathcal{H}_{AB}=mathcal{H}_A otimes mathcal{H}_B$, for every density operator $rho_{AB}$ one has $ D( rho_{AB} || sigma_A otimes sigma_B ) ge D( rho_A || sigma_A ) +D( rho_B || sigma_B) $. In this work, we provide an extension of this inequality for arbitrary density operators $ sigma_{AB} $. More specifically, we prove that $ alpha (sigma_{AB})cdot D({rho_{AB}}||{sigma_{AB}}) ge D({rho_A}||{sigma_A})+D({rho_B}||{sigma_B})$ holds for all bipartite states $rho_{AB}$ and $sigma_{AB}$, where $alpha(sigma_{AB})= 1+2 || sigma_A^{-1/2} otimes sigma_B^{-1/2} , sigma_{AB} , sigma_A^{-1/2} otimes sigma_B^{-1/2} - mathbb{1}_{AB} ||_infty$.
87 - Nadish de Silva 2017
While quantum computers are expected to yield considerable advantages over classical devices, the precise features of quantum theory enabling these advantages remain unclear. Contextuality--the denial of a notion of classical physical reality--has emerged as a promising hypothesis. Magic states are quantum resources critical for practically achieving universal quantum computation. They exhibit the standard form of contextuality that is known to enable probabilistic advantages in a variety of computational and communicational tasks. Strong contextuality is an extremal form of contextuality describing systems that exhibit logically paradoxical behaviour. Here, we consider special magic states that deterministically enable quantum computation. After introducing number-theoretic techniques for constructing exotic quantum paradoxes, we present large classes of strongly contextual magic states that enable deterministic implementation of gates from the Clifford hierarchy. These surprising discoveries bolster a refinement of the resource theory of contextuality that emphasises the computational power of logical paradoxes.
We survey several problems related to logical aspects of quantum structures. In particular, we consider problems related to completions, decidability and axiomatizability, and embedding problems. The historical development is described, as well as recent progress and some suggested paths forward.
470 - M. A. Yurischev 2017
For the XXZ subclass of symmetric two-qubit X states, we study the behavior of quantum conditional entropy S_{cond} as a function of measurement angle thetain[0,pi/2]. Numerical calculations show that the function S_{cond}(theta) for X states can have at most one local extremum in the open interval from zero to pi/2 (unimodality property). If the extremum is a minimum the quantum discord displays region with variable (state-dependent) optimal measurement angle theta^*. Such theta-regions (phases, fractions) are very tiny in the space of X state parameters. We also discover the cases when the conditional entropy has a local maximum inside the interval (0,pi/2). It is remarkable that the maxima exist in surprisingly wide regions and the boundaries for such regions are defined by the same bifurcation conditions as for those with a minimum. Moreover, the found maxima can exceed the conditional entropy values at the ends of interval [0,pi/2] more than by 1%. This instils hope in the possibility to detect such maxima in experiment.
In this note we lay some groundwork for the resource theory of thermodynamics in general probabilistic theories (GPTs). We consider theories satisfying a purely convex abstraction of the spectral decomposition of density matrices: that every state has a decomposition, with unique probabilities, into perfectly distinguishable pure states. The spectral entropy, and analogues using other Schur-concave functions, can be defined as the entropy of these probabilities. We describe additional conditions under which the outcome probabilities of a fine-grained measurement are majorized by those for a spectral measurement, and therefore the spectral entropy is the measurement entropy (and therefore concave). These conditions are (1) projectivity, which abstracts aspects of the Lueders-von Neumann projection postulate in quantum theory, in particular that every face of the state space is the positive part of the image of a certain kind of projection operator called a filter; and (2) symmetry of transition probabilities. The conjunction of these, as shown earlier by Araki, is equivalent to a strong geometric property of the unnormalized state cone known as perfection: that there is an inner product according to which every face of the cone, including the cone itself, is self-dual. Using some assumptions about the thermodynamic cost of certain processes that are partially motivated by our postulates, especially projectivity, we extend von Neumanns argument that the thermodynamic entropy of a quantum system is its spectral entropy to generalized probabilistic systems satisfying spectrality.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا