Do you want to publish a course? Click here

Hidden quasi-symmetries stabilize non-trivial quantum oscillations in CoSi

102   0   0.0 ( 0 )
 Added by Chunyu Guo
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The symmetries of a crystal form the guiding principle to understand the topology of its band structure. They dictate the location and degrees of stable band crossings which lead to significant sources of Berry curvature. Here we show how non-crystalline quasi-symmetries stabilize near-degeneracies of bands over extended regions in energy and in the Brillouin zone. Specifically, a quasi-symmetry is an exact symmetry of a $kcdot p$ Hamiltonian to lower-order that is broken by higher-order terms. Hence quasi-symmetric points are gapped, yet the gap is parametrically small and therefore does not influence the physical properties of the system. We demonstrate that in the eV-bandwidth semi-metal CoSi an internal quasi-symmetry stabilizes gaps in the 1-2 meV range over a large near-degenerate plane. This quasi-symmetry is key to explaining the surprising simplicity of the experimentally observed quantum oscillations of four interpenetrating Fermi surfaces around the R-point. Untethered from limitations of crystalline symmetry, quasi-symmetries can source large Berry curvature over wide ranges of energy and on low symmetry points - thereby impacting quasiparticle dynamics in unexpected places. Quasi-symmetries also lead to new types of Wigner-Von Neumann classifications.



rate research

Read More

We survey the electrical transport properties of the single-crystalline, topological chiral semimetal CoSi which was grown via different methods. High-quality CoSi single crystals were found in the growth from tellurium solution. The samples high carrier mobility enables us to observe, for the first time, quantum oscillations (QOs) in its thermoelectrical signals. Our analysis of QOs reveals two spherical Fermi surfaces around the R point in the Brillouin zone corner. The extracted Berry phases of these electron orbits are consistent with the -2 chiral charge as reported in DFT calculations. Detailed analysis on the QOs reveals that the spin-orbit coupling induced band-splitting is less than 2 meV near the Fermi level, one order of magnitude smaller than our DFT calculation result. We also report the phonon-drag induced large Nernst effect in CoSi at intermediate temperatures.
The BaAl$_4$ prototype crystal structure is the most populous of all structure types, and is the building block for a diverse set of sub-structures including the famous ThCr$_2$Si$_2$ family that hosts high-temperature superconductivity and numerous magnetic and strongly correlated electron systems. The MA$_4$ family of materials (M=Sr, Ba, Eu; A=Al, Ga, In) themselves present an intriguing set of ground states including charge and spin orders, but have largely been considered as uninteresting metals. Using electronic structure calculations, symmetry analysis and topological quantum chemistry techniques, we predict the exemplary compound BaAl$_4$ to harbor a three-dimensional Dirac spectrum with non-trivial topology and possible nodal lines crossing the Brillouin zone, wherein one pair of semi-Dirac points with linear dispersion along the $k_z$ direction and quadratic dispersion along the $k_x/k_y$ direction resides on the rotational axis with $C_{4v}$ point group symmetry. Electrical transport measurements reveal the presence of an extremely large, unsaturating positive magnetoresistance in BaAl$_4$ despite an uncompensated band structure, and quantum oscillations and angle-resolved photoemission spectroscopy measurements confirm the predicted multiband semimetal structure with pockets of Dirac holes and a Van Hove singularity (VHS) remarkably consistent with the theoretical prediction. We thus present BaAl$_4$ as a new topological semimetal, casting its prototype status into a new role as building block for a vast array of new topological materials.
112 - G. Montambaux , D. Jerome 2015
We review the physics of magnetic quantum oscillations in quasi-one dimensional conductors with an open Fermi surface, in the presence of modulated order. We emphasize the difference between situations where a modulation couples states on the same side of the Fermi surface and a modulation couples states on opposite sides of the Fermi surface. We also consider cases where several modulations coexist, which may lead to a complex reorganization of the Fermi surface. The interplay between nesting effects and magnetic breakdown is discussed. The experimental situation is reviewed.
The discovery of topological insulators (TIs), materials with bulk band gaps and protected cross-gap surface states, in compounds such as Bi2Se3 has generated much interest in identifying topological surface states (TSSs) in other classes of materials. In particular, recent theory calculations suggest that TSSs may be found in half-Heusler ternary compounds. If experimentally realizable, this would provide a materials platform for entirely new heterostructure spintronic devices that make use of the structurally-identical but electronically-varied nature of Heusler compounds. Here, we show the presence of a TSS in epitaxially grown thin films of the half-Heusler compound PtLuSb. Spin and angle-resolved photoemission spectroscopy (ARPES), complemented by theoretical calculations, reveals a surface state with linear dispersion and a helical tangential spin texture consistent with previous predictions. This experimental verification of TI behavior is a significant step forward in establishing half-Heusler compounds as a viable material system for future spintronics devices.
The magnetic properties of a new family of molecular-based quasi-two dimension $S=1/2$ Heisenberg antiferromagnets are reported. Three compounds, ($Cu(pz)_2(ClO_4)_2$, $Cu(pz)_2(BF_4)_2$, and $[Cu(pz)_2(NO_3)](PF_6)$) contain similar planes of Cu$^{2+}$ ions linked into magnetically square lattices by bridging pyrazine molecules (pz = $C_4H_4N_2$). The anions provide charge balance as well as isolation between the layers. Single crystal measurements of susceptibility and magnetization, as well as muon spin relaxation studies, reveal low ratios of N{e}el temperatures to exchange strengths ($4.25 / 17.5 = 0.243$, $3.80/15.3=0.248$, and $3.05/10.8=0.282$, respectively) while the ratio of the anisotropy fields $H_A$ (kOe) to the saturation field $H_mathrm{SAT}$ (kOe) are small ($2.6/490 = 5.3times10^{-3}$, $2.4/430=5.5times10^{-3}$, and $0.07/300=2.3times10^{-4}$, respectively), demonstrating close approximations to a 2D Heisenberg model. The susceptibilities of ClO$_4$ and BF$_4$ show evidence of an exchange anisotropy crossover (Heisenberg to $XY$) at low temperatures; their ordering transitions are primarily driven by the $XY$ behavior with the ultimate 3D transition appearing parasitically. The PF$_6$ compound remains Heisenberg-like at all temperatures, with its transition to the N{e}el state due to the interlayer interactions. Effects of field-induced anisotropy have been observed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا