Concentration inequalities from monotone couplings for graphs, walks, trees and branching processes


Abstract in English

Generalized gamma distributions arise as limits in many settings involving random graphs, walks, trees, and branching processes. Pekoz, Rollin, and Ross (2016, arXiv:1309.4183 [math.PR]) exploited characterizing distributional fixed point equations to obtain uniform error bounds for generalized gamma approximations using Steins method. Here we show how monotone couplings arising with these fixed point equations can be used to obtain sharper tail bounds that, in many cases, outperform competing moment-based bounds and the uniform bounds obtainable with Steins method. Applications are given to concentration inequalities for preferential attachment random graphs, branching processes, random walk local time statistics and the size of random subtrees of uniformly random binary rooted plane trees.

Download