Plasma-induced surface cooling


Abstract in English

Here we show that, despite a massive incident flux of energetic species, plasmas can induce transient cooling of a material surface. Using time-resolved optical thermometry in-situ with this plasma excitation, we reveal the novel underlying physics that drive this `plasma cooling that is driven by the diverse chemical and energetic species that comprise this fourth state of matter. We show that the photons and massive particles in the plasma impart energy to different chemical species on a surface, leading to local and temporally changing temperatures that lead to both increases and decreases in temperature on the surface of the sample, even though energy is being imparted to the material. This balance comes from the interplay between chemical reactions, momentum transfer, and energy exchange which occur on different time scales over the course of picoseconds to milliseconds. Thus, we show that through energetically exciting a material with a plasma, we can induce cooling, which can lead to revolutionary advances in refrigeration and thermal mitigation with this new process that is not inhibited by the same limitations in the current state-of-the-art systems.

Download