Do you want to publish a course? Click here

FPB: Feature Pyramid Branch for Person Re-Identification

79   0   0.0 ( 0 )
 Added by Suofei Zhang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

High performance person Re-Identification (Re-ID) requires the model to focus on both global silhouette and local details of pedestrian. To extract such more representative features, an effective way is to exploit deep models with multiple branches. However, most multi-branch based methods implemented by duplication of part backbone structure normally lead to severe increase of computational cost. In this paper, we propose a lightweight Feature Pyramid Branch (FPB) to extract features from different layers of networks and aggregate them in a bidirectional pyramid structure. Cooperated by attention modules and our proposed cross orthogonality regularization, FPB significantly prompts the performance of backbone network by only introducing less than 1.5M extra parameters. Extensive experimental results on standard benchmark datasets demonstrate that our proposed FPB based model outperforms state-of-the-art methods with obvious margin as well as much less model complexity. FPB borrows the idea of the Feature Pyramid Network (FPN) from prevailing object detection methods. To our best knowledge, it is the first successful application of similar structure in person Re-ID tasks, which empirically proves that pyramid network as affiliated branch could be a potential structure in related feature embedding models. The source code is publicly available at https://github.com/anocodetest1/FPB.git.



rate research

Read More

In this work, we present a deep convolutional pyramid person matching network (PPMN) with specially designed Pyramid Matching Module to address the problem of person re-identification. The architecture takes a pair of RGB images as input, and outputs a similiarity value indicating whether the two input images represent the same person or not. Based on deep convolutional neural networks, our approach first learns the discriminative semantic representation with the semantic-component-aware features for persons and then employs the Pyramid Matching Module to match the common semantic-components of persons, which is robust to the variation of spatial scales and misalignment of locations posed by viewpoint changes. The above two processes are jointly optimized via a unified end-to-end deep learning scheme. Extensive experiments on several benchmark datasets demonstrate the effectiveness of our approach against the state-of-the-art approaches, especially on the rank-1 recognition rate.
In this work, we present a Multi-Channel deep convolutional Pyramid Person Matching Network (MC-PPMN) based on the combination of the semantic-components and the color-texture distributions to address the problem of person re-identification. In particular, we learn separate deep representations for semantic-components and color-texture distributions from two person images and then employ pyramid person matching network (PPMN) to obtain correspondence representations. These correspondence representations are fused to perform the re-identification task. Further, the proposed framework is optimized via a unified end-to-end deep learning scheme. Extensive experiments on several benchmark datasets demonstrate the effectiveness of our approach against the state-of-the-art literature, especially on the rank-1 recognition rate.
Person re-identification (reID) plays an important role in computer vision. However, existing methods suffer from performance degradation in occluded scenes. In this work, we propose an occlusion-robust block, Region Feature Completion (RFC), for occluded reID. Different from most previous works that discard the occluded regions, RFC block can recover the semantics of occluded regions in feature space. Firstly, a Spatial RFC (SRFC) module is developed. SRFC exploits the long-range spatial contexts from non-occluded regions to predict the features of occluded regions. The unit-wise prediction task leads to an encoder/decoder architecture, where the region-encoder models the correlation between non-occluded and occluded region, and the region-decoder utilizes the spatial correlation to recover occluded region features. Secondly, we introduce Temporal RFC (TRFC) module which captures the long-term temporal contexts to refine the prediction of SRFC. RFC block is lightweight, end-to-end trainable and can be easily plugged into existing CNNs to form RFCnet. Extensive experiments are conducted on occluded and commonly holistic reID benchmarks. Our method significantly outperforms existing methods on the occlusion datasets, while remains top even superior performance on holistic datasets. The source code is available at https://github.com/blue-blue272/OccludedReID-RFCnet.
We address the person re-identification problem by effectively exploiting a globally discriminative feature representation from a sequence of tracked human regions/patches. This is in contrast to previous person re-id works, which rely on either single frame based person to person patch matching, or graph based sequence to sequence matching. We show that a progressive/sequential fusion framework based on long short term memory (LSTM) network aggregates the frame-wise human region representation at each time stamp and yields a sequence level human feature representation. Since LSTM nodes can remember and propagate previously accumulated good features and forget newly input inferior ones, even with simple hand-crafted features, the proposed recurrent feature aggregation network (RFA-Net) is effective in generating highly discriminative sequence level human representations. Extensive experimental results on two person re-identification benchmarks demonstrate that the proposed method performs favorably against state-of-the-art person re-identification methods.
Re-identifying a person across multiple disjoint camera views is important for intelligent video surveillance, smart retailing and many other applications. However, existing person re-identification (ReID) methods are challenged by the ubiquitous occlusion over persons and suffer from performance degradation. This paper proposes a novel occlusion-robust and alignment-free model for occluded person ReID and extends its application to realistic and crowded scenarios. The proposed model first leverages the full convolution network (FCN) and pyramid pooling to extract spatial pyramid features. Then an alignment-free matching approach, namely Foreground-aware Pyramid Reconstruction (FPR), is developed to accurately compute matching scores between occluded persons, despite their different scales and sizes. FPR uses the error from robust reconstruction over spatial pyramid features to measure similarities between two persons. More importantly, we design an occlusion-sensitive foreground probability generator that focuses more on clean human body parts to refine the similarity computation with less contamination from occlusion. The FPR is easily embedded into any end-to-end person ReID models. The effectiveness of the proposed method is clearly demonstrated by the experimental results (Rank-1 accuracy) on three occluded person datasets: Partial REID (78.30%), Partial iLIDS (68.08%) and Occluded REID (81.00%); and three benchmark person datasets: Market1501 (95.42%), DukeMTMC (88.64%) and CUHK03 (76.08%)
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا