Do you want to publish a course? Click here

$N$-spike string in $AdS_3 times S^1$ with mixed flux

137   0   0.0 ( 0 )
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

Sigma model in $AdS_3times S^3$ background supported by both NS-NS and R-R fluxes is one of the most distinguished integrable models. We study a class of classical string solutions for $N$-spike strings moving in $AdS_3 times S^1$ with angular momentum $J$ in $S^1 subset S^5$ in the presence of mixed flux. We observe that the addition of angular momentum $J$ or winding number $m$ results in the spikes getting rounded off and not end in cusp. The presence of flux shows no alteration to the rounding-off nature of the spikes. We also consider the large $N$-limit of $N$-spike string in $AdS_3 times S^1$ in the presence of flux and show that the so-called Energy-Spin dispersion relation is analogous to the solution we get for the periodic-spike in $AdS_3-pp-$wave $times S^1$ background with flux.



rate research

Read More

$SL(2,mathbb{Z})$ invariant action for probe $(m,n)$ string in $AdS_3times S^3times T^4$ with mixed three-form fluxes can be described by an integrable deformation of an one-dimensional Neumann-Rosochatius (NR) system. We present the deformed features of the integrable model and study general class of rotating and pulsating solutions by solving the integrable equations of motion. For the rotating string, the explicit solutions can be expressed in terms of elliptic functions. We make use of the integrals of motion to find out the scaling relation among conserved charges for the particular case of constant radii solutions. Then we study the closed $(m,n)$ string pulsating in $R_ttimes S^3$. We find the string profile and calculate the total energy of such pulsating string in terms of oscillation number $(cal{N})$ and angular momentum $(cal{J})$.
We study $AdS_3 times S^1 times Y$ supersymmetric string theory backgrounds with Neveu-Schwarz-Neveu-Schwarz flux that are dual to ${cal N}=2$ superconformal theories on the boundary. We classify all worldsheet vertex operators that correspond to space-time chiral primaries. We compute space-time chiral ring structure constants for operators in the zero spectral flow sector using the operator product expansion in the worldsheet theory. We find that the structure constants take a universal form that depends only on the topological data of the ${cal N}=2$ superconformal theory on $Y$.
We use Dirac-Born-Infeld action to study the spinning D-string in $AdS_3 $ background in the presence of both NS-NS and RR fluxes. We compute the scaling relation between the energy (E) and spin (S) in the `long string limit. The energy of these spiky string is found to be a function of spin with the leading logarithmic behaviour and the scaling relation appears to be independent of the amount of flux present. We further discuss folded D-string solutions in $AdS_3$ background with pure NS-NS and R-R fluxes.
We address the question about the exact form of the dispersion relation for light-cone string excitations in string theory in AdS3 x S3 x T4 with mixed R-R and NS-NS 3-form fluxes. The analogy with string theory in AdS5 x S5 suggests that in addition to the data provided by the perturbative near-BMN expansion and the symmetry algebra considerations there is also another source of information about the dispersion relation -- the semiclassical giant magnon solution. In earlier work in arXiv:1303.1037 and arXiv:1304.4099 it was found that the symmetry algebra constraints consistent with perturbative expansion do not completely determine the form of the dispersion relation. The aim of the present paper is to fix it by constructing a generalization of the known dyonic giant magnon soliton on S3 to the presence of a non-zero NS-NS flux described by a WZ term in the string action. We find that the angular momentum of this soliton gets shifted by a term linear in world-sheet momentum. We also discuss the symmetry algebra of the string light-cone S-matrix and show that the exact dispersion relation, which should have the correct perturbative BMN and semiclassical giant magnon limits, should also contain such a linear momentum term. The simplicity of the resulting bound-state picture provides a strong argument in favour of this dispersion relation.
We discuss finite-size corrections to the spiky strings in $AdS$ space which is dual to the long $mathcal{N}=4$ SYM operators of the form Tr($Delta_+ ^{J_1}phi_1Delta_+ ^{J_2}phi_2...Delta_+ ^{J_n}phi_n$). We express the finite-size dispersion relation in terms of Lambert $mathbf{W}$-function. We further establish the finite-size scaling relation between energy and angular momentum of the spiky string in presence of mixed fluxes in terms of $mathbf{W}$-function. We comment on the solution in pure NS-NS background as well.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا