Do you want to publish a course? Click here

A search for candidate strongly-lensed dusty galaxies in the Planck satellite catalogues

53   0   0.0 ( 0 )
 Added by Carlo Burigana Dr.
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Planck sub-mm surveys detected the brightest strongly gravitationally lensed dusty galaxies in the sky. The combination of their extreme gravitational flux boosting and image stretching offers the unique possibility of measuring in detail, via high-resolution imaging and spectroscopic follow-up, the galaxy structure and kinematics in early evolutionary phases, thus gaining otherwise unaccessible direct information on physical processes in action. The extraction of candidate strongly lensed galaxies (SLGs) from Planck catalogues is hindered by the fact that they are generally detected with poor S/N, except for the few brightest ones, their photometric properties are strongly blurred and they are difficult to single out. We devised a method to increase by a factor of 3 to 4 the number of identified Planck-detected SLGs, although with an unavoidably limited efficiency. Our approach uses the fact that SLGs have sub-mm colours colder than nearby dusty galaxies (the large majority of Planck extragalactic sources). The sub-mm colours of the 47 confirmed or very likely Planck-detected SLGs are used to estimate the colour range of these objects. Moreover, most nearby galaxies and radio sources can be picked up by cross-matching with IRAS and PCNT catalogues, respectively. We present samples of 177, 97, 104 lensed candidates at 545, 857, 353 GHz, respectively. The efficiency of our approach, tested on the SPT survey covering 2,500 sq. deg., is estimated to be of 30%-40%. We also discuss stricter selection criteria increasing efficiency to 50% but with a somewhat lower completeness. Our analysis of SPT data has identified a dozen of galaxies that can be reliably considered previously unrecognized Planck-detected SLGs. Extrapolating the number of Planck-detected confirmed or very likely SLGs found within the SPT and H-ATLAS areas, we expect from 150 to 190 such sources over the|b|>20deg sky.



rate research

Read More

136 - J. P. McKean 2010
Luminous extragalactic water masers are known to be associated with AGN and have provided accurate estimates for the mass of the central supermassive black hole and the size and structure of the accretion disk in nearby galaxies. To find water masers at much higher redshifts, we have begun a survey of known gravitationally lensed quasars and star-forming galaxies. In this paper, we present a search for 22 GHz (rest frame) water masers toward five dusty, gravitationally lensed quasars and star-forming galaxies at redshifts 2.3--2.9 with the Effelsberg telescope and the EVLA. Our observations do not find any new definite examples of high redshift water maser galaxies, suggesting that large reservoirs of dust and gas are not a sufficient condition for powerful water maser emission. However, we do find the tentative detection of a water maser system in the active galaxy IRAS 10214+4724 at redshift 2.285. Our survey has now doubled the number of lensed galaxies and quasars that have been searched for high redshift water masers. We present an analysis of the high redshift water maser luminosity function that is based on the results presented here and from the only cosmologically distant (z > 1) water maser galaxy found thus far, MG J0414+0534 at redshift 2.64. By comparing with the luminosity function locally and at moderate redshifts, we find that there must be some evolution in the luminosity function of water maser galaxies at high redshifts. By assuming a moderate evolution [(1 + z )^4] in the luminosity function, we find that blind surveys for water maser galaxies are only worthwhile with extremely high sensitivity like that of the planned Square Kilometre Array. However, instruments like the EVLA and MeerKAT will be capable of detecting water maser systems similar to the one found from MG J0414+0534 through targeted observations.
We present Atacama Large Millimeter/submillimeter Array (ALMA) 860 micrometer imaging of four high-redshift (z=2.8-5.7) dusty sources that were detected using the South Pole Telescope (SPT) at 1.4 mm and are not seen in existing radio to far-infrared catalogs. At 1.5 arcsec resolution, the ALMA data reveal multiple images of each submillimeter source, separated by 1-3 arcsec, consistent with strong lensing by intervening galaxies visible in near-IR imaging of these sources. We describe a gravitational lens modeling procedure that operates on the measured visibilities and incorporates self-calibration-like antenna phase corrections as part of the model optimization, which we use to interpret the source structure. Lens models indicate that SPT0346-52, located at z=5.7, is one of the most luminous and intensely star-forming sources in the universe with a lensing corrected FIR luminosity of 3.7 X 10^13 L_sun and star formation surface density of 4200 M_sun yr^-1 kpc^-2. We find magnification factors of 5 to 22, with lens Einstein radii of 1.1-2.0 arcsec and Einstein enclosed masses of 1.6-7.2x10^11 M_sun. These observations confirm the lensing origin of these objects, allow us to measure the their intrinsic sizes and luminosities, and demonstrate the important role that ALMA will play in the interpretation of lensed submillimeter sources.
We report the discovery, spectroscopic confirmation and first lens models of the first two, strongly lensed quasars from a combined search in WISE and Gaia over the DES footprint. The four-image lensWGD2038-4008 (r.a.=20:38:02.65, dec.=-40:08:14.64) has source- and lens-redshifts $z_{s}=0.777 pm 0.001$ and $z_l = 0.230 pm 0.002$ respectively. Its deflector has effective radius $R_{rm eff} approx 3.4^{primeprime}$, stellar mass $log(M_{star}/M_{odot}) = 11.64^{+0.20}_{-0.43}$, and shows extended isophotal shape variation. Simple lens models yield Einstein radii $R_{rm E}=(1.30pm0.04)^{primeprime},$ axis ratio $q=0.75pm0.1$ (compatible with that of the starlight) and considerable shear-ellipticity degeneracies. The two-image lensWGD2021-4115 (r.a.=20:21:39.45, dec.=--41:15:57.11) has $z_{s}=1.390pm0.001$ and $z_l = 0.335 pm 0.002$, and Einstein radius $R_{rm E} = (1.1pm0.1)^{primeprime},$ but higher-resolution imaging is needed to accurately separate the deflector and faint quasar image. We also show high-rank candidate doubles selected this way, some of which have been independently identified with different techniques, and discuss a DES+WISE quasar multiplet selection.
We investigate how strong lensing of dusty, star-forming galaxies by foreground galaxies can be used as a probe of dark matter halo substructure. We find that spatially resolved spectroscopy of lensed sources allows dramatic improvements to measurements of lens parameters. In particular we find that modeling of the full, three-dimensional (angular position and radial velocity) data can significantly facilitate substructure detection, increasing the sensitivity of observables to lower mass subhalos. We carry out simulations of lensed dusty sources observed by early ALMA (Cycle 1) and use a Fisher matrix analysis to study the parameter degeneracies and mass detection limits of this method. We find that, even with conservative assumptions, it is possible to detect galactic dark matter subhalos of ~ 10^8 M_{odot} with high significance in most lensed DSFGs. Specifically, we find that in typical DSFG lenses, there is a ~ 55 % probability of detecting a substructure with M>10^8 M_{odot} with more than 5 sigma detection significance in each lens, if the abundance of substructure is consistent with previous lensing results. The full ALMA array, with its significantly enhanced sensitivity and resolution, should improve these estimates considerably. Given the sample of ~100 lenses provided by surveys like the South Pole Telescope, our understanding of dark matter substructure in typical galaxy halos is poised to improve dramatically over the next few years.
The analysis of optical images of galaxy-galaxy strong gravitational lensing systems can provide important information about the distribution of dark matter at small scales. However, the modeling and statistical analysis of these images is extraordinarily complex, bringing together source image and main lens reconstruction, hyper-parameter optimization, and the marginalization over small-scale structure realizations. We present here a new analysis pipeline that tackles these diverse challenges by bringing together many recent machine learning developments in one coherent approach, including variational inference, Gaussian processes, differentiable probabilistic programming, and neural likelihood-to-evidence ratio estimation. Our pipeline enables: (a) fast reconstruction of the source image and lens mass distribution, (b) variational estimation of uncertainties, (c) efficient optimization of source regularization and other hyperparameters, and (d) marginalization over stochastic model components like the distribution of substructure. We present here preliminary results that demonstrate the validity of our approach.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا