No Arabic abstract
High-mass microquasars (HMMQs) are powerful particle accelerators, but their mechanism of the high-energy emission is poorly understood. To date, only a handful of these particle engines have ever been observed to emit gamma-ray photons and are thus potential TeV gamma-ray emitters. In this work, we study four HMMQs, namely, LS 5039, Cyg X-1, Cyg X-3, and SS 433 using the data from the High Altitude Water Cherenkov (HAWC) observatory. We perform time dependent analyses on each HMMQ to look for any periodic variations in their flux. We produce light curves using the HAWC daily maps from which we generate Lomb-Scargle periodograms. By analysing the significance of the periodogram peaks, we assess whether or not HAWC is sensitive to orbitally modulating TeV gamma-ray flux in the four HMMQs.
Microquasars with high-mass companion stars are promising very-high-energy (VHE; 0.1-100 TeV) gamma-ray emitters, but their behaviors above 10 TeV are poorly known. Using the High Altitude Water Cherenkov (HAWC) observatory, we search for excess gamma-ray emission coincident with the positions of known high-mass microquasars (HMMQs). No significant emission is observed for LS 5039, Cygnus X-1, Cygnus X-3, and SS 433 with 1,523 days of HAWC data. We set the most stringent limit above 10 TeV obtained to date on each individual source. Under the assumption that HMMQs produce gamma rays via a common mechanism, we have performed source-stacking searches, considering two different scenarios: I) gamma-ray luminosity is a fraction $epsilon_gamma$ of the microquasar jet luminosity, and II) very-high-energy gamma rays are produced by relativistic electrons up-scattering the radiation field of the companion star in a magnetic field $B$. We obtain $epsilon_gamma < 5.4times 10^{-6}$ for scenario I, which tightly constrains models that suggest observable high-energy neutrino emission by HMMQs. In the case of scenario II, the non-detection of VHE gamma rays yields a strong magnetic field, which challenges synchrotron radiation as the dominant mechanism of the microquasar emission between 10 keV and 10 MeV.
Theoretical models and observations suggest that primordial Stellar Black Holes (Pop-III-BHs) were prolifically formed in HMXBs, which are powerful relativistic jet sources of synchrotron radiation called Microquasars (MQs). Large populations of BH-HMXB-MQs at cosmic dawn produce a smooth synchrotron cosmic radio background (CRB) that could account for the excess amplitude of atomic hydrogen absorption at z~17, recently reported by EDGES. BH-HMXB-MQs at cosmic dawn precede supernovae, neutron stars and dust. BH-HMXB-MQs promptly inject hard X-rays and relativistic jets into the IGM, which overtake the slower expanding HII regions ionized by progenitor Pop-III stars, heating and partially ionizing the IGM over larger distance scales. BH-HMXBs are channels for the formation of Binary-Black-Holes (BBHs). The large masses of BBHs detected by gravitational waves, relative to the masses of BHs detected by X-rays, and the high rates of BBH-mergers, are consistent with high formation rates of BH-HMXBs and BBHs in the early universe.
The High Altitude Water Cherenkov (HAWC) observatory is a wide field-of-view detector sensitive to gamma rays of 100 GeV to a few hundred TeV. Located in central Mexico at 19 degrees North latitude and 4100 m above sea level, HAWC will observe gamma rays and cosmic rays with an array of water Cherenkov detectors. The full HAWC array is scheduled to be operational in Spring 2015. In this paper, we study the HAWC sensitivity to the gamma-ray signatures of high-mass (multi- TeV) dark matter annihilation. The HAWC observatory will be sensitive to diverse searches for dark matter annihilation, including annihilation from extended dark matter sources, the diffuse gamma-ray emission from dark matter annihilation, and gamma-ray emission from non-luminous dark matter subhalos. Here we consider the HAWC sensitivity to a subset of these sources, including dwarf galaxies, the M31 galaxy, the Virgo cluster, and the Galactic center. We simulate the HAWC response to gamma rays from these sources in several well-motivated dark matter annihilation channels. If no gamma-ray excess is observed, we show the limits HAWC can place on the dark matter cross-section from these sources. In particular, in the case of dark matter annihilation into gauge bosons, HAWC will be able to detect a narrow range of dark matter masses to cross-sections below thermal. HAWC should also be sensitive to non-thermal cross-sections for masses up to nearly 1000 TeV. The constraints placed by HAWC on the dark matter cross-section from known sources should be competitive with current limits in the mass range where HAWC has similar sensitivity. HAWC can additionally explore higher dark matter masses than are currently constrained.
The cosmic-ray flux in the Galaxy can be characterized by combining the knowledge of the distribution of gas in the Galaxy and the observation of gamma rays. We analyze the data from the HAWC Observatory to look for gamma rays in three galactic giant molecular clouds, that are outside the galactic plane ($|b|>5^{circ}$). We can then test the paradigm that the measured local cosmic-ray flux is the same as the sea of Galactic cosmic rays. Due to its large field of view, and high duty cycle, HAWC is suitable to search for gamma rays from large structures in the TeV gamma-ray regime. We present here preliminary results from measurements of the Aquila Rift, Hercules and Taurus molecular clouds.
High-mass microquasar jets propagate under the effect of the wind from the companion star, and the orbital motion of the binary system. The stellar wind and the orbit may be dominant factors determining the jet properties beyond the binary scales.} An analytical study is performed to characterize the effects of the stellar wind and the orbital motion on the jet properties. Accounting for the wind thrust transferred to the jet, we derive analytical estimates to characterize the jet evolution under the impact of the stellar wind. We include the Coriolis force effect, induced by orbital motion and enhanced by the wind presence. Large-scale evolution of the jet is sketched accounting for wind-to-jet thrust transfer, total energy conservation, and wind-jet flow mixing. If the angle of the wind-induced jet bending is larger than its half-opening angle, the following is expected: (i) a strong recollimation shock; (ii) bending against orbital motion, caused by Coriolis forces and enhanced by the wind presence; and (iii) non-ballistic helical propagation further away. Even if disrupted, the jet can reaccelerate due to ambient pressure gradients, but wind entrainment can weaken this acceleration. On large scales, the opening angle of the helical structure is determined by the wind-jet thrust relation, and the wind-loaded jet flow can be rather slow. The impact of stellar winds on high-mass microquasar jets can yield non-ballistic helical jet trajectories, jet partial disruption and wind mixing, shocks, and possibly non-thermal emission. Among several observational diagnostics at different bands, the radio morphology on milliarcsecond scales can be particularly insightful regarding the wind-jet interaction.