No Arabic abstract
Let $(A,mathfrak{m})$ be a complete intersection with $k = A/mathfrak{m}$ algebraically closed. Let CMS(A) be the stable category of maximal CM $A$-modules. For a large class of thick subcategories $mathcal{S}$ of CMS(A) we show that there is a theory of support varieties for the Verdier quotient $mathcal{T} = $ CMS(A)$/mathcal{S}$. As an application we show that the analogous version of Auslander-Reiten conjecture, Murthys result, Avramov-Buchweitz result on symmetry of vanishing of cohomology holds for $mathcal{T}$.
In this paper, we answer a question of Dwyer, Greenlees, and Iyengar by proving a local ring $R$ is a complete intersection if and only if every complex of $R$-modules with finitely generated homology is proxy small. Moreover, we establish that a commutative noetherian ring $R$ is locally a complete intersection if and only if every complex of $R$-modules with finitely generated homology is virtually small.
Let $(A,mathfrak{m})$ be a local complete intersection ring and let $I$ be an ideal in $A$. Let $M, N$ be finitely generated $A$-modules. Then for $l = 0,1$, the values $depth Ext^{2i+l}_A(M, N/I^nN)$ become independent of $i, n$ for $i,n gg 0$. We also show that if $mathfrak{p}$ is a prime ideal in $A$ then the $j^{th}$ Bass numbers $mu_jbig(mathfrak{p}, Ext^{2i+l}_A(M,N/{I^nN})big)$ has polynomial growth in $(n,i)$ with rational coefficients for all sufficiently large $(n,i)$.
We investigate the equivariant intersection cohomology of a toric variety. Considering the defining fan of the variety as a finite topological space with the subfans being the open sets (that corresponds to the toric topology given by the invariant open subsets), equivariant intersection cohomology provides a sheaf (of graded modules over a sheaf of graded rings) on that fan space. We prove that this sheaf is a minimal extension sheaf, i.e., that it satisfies three relatively simple axioms which are known to characterize such a sheaf up to isomorphism. In the verification of the second of these axioms, a key role is played by equivariantly formal toric varieties, where equivariant and usual (non-equivariant) intersection cohomology determine each other by Kunneth type formulae. Minimal extension sheaves can be constructed in a purely formal way and thus also exist for non-rational fans. As a consequence, we can extend the notion of an equivariantly formal fan even to this general setup. In this way, it will be possible to introduce virtual intersection cohomology for equivariantly formal non-rational fans.
Let $X^{2n}subseteq mathbb{P} ^N$ be a smooth projective variety. Consider the intersection cohomology complex of the local system $R^{2n-1}pi{_*}mathbb{Q}$, where $pi$ denotes the projection from the universal hyperplane family of $X^{2n}$ to ${(mathbb{P} ^N)}^{vee}$. We investigate the cohomology of the intersection cohomology complex $IC(R^{2n-1}pi{_*}mathbb{Q})$ over the points of a Severis variety, parametrizing nodal hypersurfaces, whose nodes impose independent conditions on the very ample linear system giving the embedding in $mathbb{P} ^N$.
Let $(A,mathfrak{m})$ be a Gorenstein local ring and let $CMS(A)$ be its stable category of maximal CM $A$-modules. Suppose $CMS(A) cong CMS(B)$ as triangulated categories. Then we show (1) If $A$ is a complete intersection of codimension $c$ then so is $B$. (2) If $A, B$ are Henselian and not hypersurfaces then $dim A = dim B$. (3) If $A, B$ are Henselian and $A$ is an isolated singularity then so is $B$. We also give some applications of our results.