Crystalline Responses for Rotation-Invariant Higher-Order Topological Insulators


Abstract in English

Two-dimensional higher-order topological insulators can display a number of exotic phenomena such as half-integer charges localized at corners or disclination defects. In this paper, we analyze these phenomena, focusing on the paradigmatic example of the quadrupole insulator with $C_4$ rotation symmetry, and present a topological field theory description of the mixed geometry-charge responses. Our theory provides a unified description of the corner and disclination charges in terms of a physical geometry (which encodes disclinations), and an effective geometry (which encodes corners). We extend this analysis to interacting systems, and predict the response of fractional quadrupole insulators, which exhibit charge $e/2(2k+1)$ bound to corners and disclinations.

Download