Do you want to publish a course? Click here

Assessing the signatures imprinted by star-forming galaxies in the cosmic $gamma$-ray background

128   0   0.0 ( 0 )
 Added by Ellis Owen
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

In recent years, $gamma$-ray emission has been detected from star-forming galaxies (SFGs) in the local universe, including M82, NGC 253, Arp 220 and M33. The bulk of this emission is thought to be of hadronic origin, arising from the interactions of cosmic rays (CRs) with the interstellar medium of their host galaxy. Distant SFGs are presumably also bright in $gamma$-rays. Although they would not be resolvable as point sources, distant unresolved SFG populations contribute $gamma$-rays to the extra-galactic $gamma$-ray background (EGB). Despite the wealth of high-quality all-sky EGB data collected over more than a decade of operation with the textit{Fermi}-LAT $gamma$-ray space telescope, the exact contribution of SFGs to the EGB remains unsettled. In this study, we model the $gamma$-ray emission from SFG populations and demonstrate that such emission can be characterized by just a small number of physically-motivated parameters. We further show that source populations would leave anisotropic signatures in the EGB, which could be used to yield information about the underlying properties, dynamics and evolution of CR-rich SFGs.



rate research

Read More

Galaxies experiencing intense star-formation episodes are expected to be rich in energetic cosmic rays (CRs). These CRs undergo hadronic interactions with the interstellar gases of their host to drive $gamma$-ray emission, which has already been detected from several nearby starbursts. Unresolved $gamma$-ray emission from more distant star-forming galaxies (SFGs) is expected to contribute to the extra-galactic $gamma$-ray background (EGB). However, despite the wealth of high-quality all-sky data from the Fermi-LAT $gamma$-ray space telescope collected over more than a decade of operation, the exact contribution of such SFGs to the EGB remains unsettled. We investigate the high-energy $gamma$-ray emission from SFGs up to redshift $z=3$ above a GeV, and assess the contribution they can make to the EGB. We show the $gamma$-ray emission spectrum from a SFG population can be determined from just a small number of key parameters, from which we model a range of possible EGB realisations. We demonstrate that populations of SFGs leave anisotropic signatures in the EGB, and that these can be accessed using the spatial power spectrum. Moreover, we show that such signatures will be accessible with ongoing operation of current $gamma$-ray instruments, and detection prospects will be greatly improved by the next generation of $gamma$-ray observatories, in particular the Cherenkov Telescope Array.
The Fermi Gamma-ray Space Telescope has revealed a diffuse $gamma$-ray background at energies from 0.1 GeV to 1 TeV, which can be separated into Galactic emission and an isotropic, extragalactic component. Previous efforts to understand the latter have been hampered by the lack of physical models capable of predicting the $gamma$-ray emission produced by the many candidate sources, primarily active galactic nuclei and star-forming galaxies, leaving their contributions poorly constrained. Here we present a calculation of the contribution of star-forming galaxies to the $gamma$-ray background that does not rely on empirical scalings, and is instead based on a physical model for the $gamma$-ray emission produced when cosmic rays accelerated in supernova remnants interact with the interstellar medium. After validating the model against local observations, we apply it to the observed cosmological star-forming galaxy population and recover an excellent match to both the total intensity and the spectral slope of the $gamma$-ray background, demonstrating that star-forming galaxies alone can explain the full diffuse, isotropic $gamma$-ray background.
Motivated by the discovery of the ultra-strong emission line starburst galaxies (EELGs) known as green pea galaxies, we consider here their contribution to the intergalactic flux of ionizing UV at high redshifts. Most galaxies that have been observed show a precipitous drop in their flux blueward of the Lyman limit. However, recent observations of EELGs have discovered that many more Lyman continuum photons escape from them into intergalactic space than was previously suspected. We calculate their contribution to the extragalactic background light (EBL). We also calculate the effect of these photons on the absorption of high energy $gamma$-rays. For the more distant $gamma$-ray sources, particularly at $z ge 3$, the intergalactic opacity above a few GeV is significantly higher than previous estimates which ignored the Lyman continuum photons. We calculate the results of this increased opacity on observed $gamma$-ray spectra, which produces a high-energy turnover starting at lower energies than previously thought, and a gradual spectral steepening that may also be observable.
75 - A. Lamastra , N. Menci , F. Fiore 2017
We derive the contribution to the extragalactic gamma-ray background (EGB) from AGN winds and star-forming galaxies by including a physical model for the gamma-ray emission produced by relativistic protons accelerated by AGN-driven and supernova-driven shocks into a state-of-the-art semi-analytic model of galaxy formation. This is based on galaxy interactions as triggers of AGN accretion and starburst activity and on expanding blast wave as the mechanism to communicate outwards the energy injected into the interstellar medium by the active nucleus. We compare the model predictions with the latest measurement of the EGB spectrum performed by the Fermi-LAT in the range between 100 MeV and 820 GeV. We find that AGN winds can provide ~35$pm$15% of the observed EGB in the energy interval E_{gamma}=0.1-1 GeV, for ~73$pm$15% at E_{gamma}=1-10 GeV, and for ~60$pm$20% at E_{gamma}>10 GeV. The AGN wind contribution to the EGB is predicted to be larger by a factor of 3-5 than that provided by star-forming galaxies (quiescent plus starburst) in the hierarchical clustering scenario. The cumulative gamma-ray emission from AGN winds and blazars can account for the amplitude and spectral shape of the EGB, assuming the standard acceleration theory, and AGN wind parameters that agree with observations. We also compare the model prediction for the cumulative neutrino background from AGN winds with the most recent IceCube data. We find that for AGN winds with accelerated proton spectral index p=2.2-2.3, and taking into account internal absorption of gamma-rays, the Fermi-LAT and IceCube data could be reproduced simultaneously.
82 - Marco Padovani 2021
Recently, there has been an increased interest in the study of the generation of low-energy cosmic rays (CRs; < 1 TeV) in shocks situated on the surface of a protostar or along protostellar jets. These locally accelerated CRs offer an attractive explanation for the high levels of non-thermal emission and ionisation rate, $zeta$, observed close to these sources. The high $zeta$ observed in some protostellar sources is generally attributed to shock-generated UV photons. The aim of this article is to show that when synchrotron emission and a high $zeta$ are measured in the same spatial region, a locally shock-accelerated CR flux is sufficient to explain both phenomena. We assume that relativistic particles are accelerated according to the first-order Fermi acceleration mechanism and compute $zeta$ and the non-thermal emission at cm wavelengths. We then apply our model to the star-forming region OMC-2 FIR 3/FIR 4. Using a Bayesian analysis, we constrain the parameters of the model and estimate the spectral indices of the non-thermal radio emission. We demonstrate that the local CR acceleration model makes it possible to simultaneously explain the synchrotron emission along the HOPS 370 jet within the FIR 3 region and $zeta$ observed near the FIR 4 protocluster. Our model constrains the magnetic field strength (~250-450$~mu$G), its turbulent component (~20-40$~mu$G), and the jet velocity in the shock reference frame for the three non-thermal sources of the HOPS 370 jet (~350-1000 km s$^{-1}$). Beyond the modelling of the OMC-2 FIR 3/FIR 4 system, we show how the combination of continuum observations at cm wavelengths and molecular transitions is a powerful new tool for the analysis of star-forming regions: these two types of observations can be simultaneously interpreted by invoking only the presence of locally accelerated CRs, without having to resort to shock-generated UV photons.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا