No Arabic abstract
Lasers are ubiquitous for information storage, processing, communications, sensing, biological research, and medical applications [1]. To decrease their energy and materials usage, a key quest is to miniaturize lasers down to nanocavities [2]. Obtaining the smallest mode volumes demands plasmonic nanocavities, but for these, gain comes from only single or few emitters. Until now, lasing in such devices was unobtainable due to low gain and high cavity losses [3]. Here, we demonstrate a plasmonic nanolaser approaching the single-molecule emitter regime. The lasing transition significantly broadens, and depends on the number of molecules and their individual locations. We show this can be understood by developing a theoretical approach [4] extending previous weak-coupling theories [5]. Our work paves the way for developing nanolaser applications [2, 6, 7] as well as fundamental studies at the limit of few emitters [5, 8, 9].
Coupling $N$ identical emitters to the same field mode is well-established method to enhance light matter interaction. However, the resulting $sqrt{N}$ boost of the coupling strength comes at the cost of a linearized (effectively semi-classical) dynamics. Here, we instead demonstrate a new approach for enhancing the coupling constant of a textit{single} quantum emitter, while retaining the nonlinear character of the light-matter interaction. We consider a single quantum emitter with $N$ nearly degenerate transitions that are collectively coupled to the same field mode. We show that in such conditions an effective Jaynes-Cummings model emerges, with a boosted coupling constant of order $sqrt{N}$. The validity and consequences of our general conclusions are analytically demonstrated for the instructive case $N=2$. We further observe that our system can closely match the spectral line shapes and photon autocorrelation functions typical of Jaynes-Cummings physics, hence proving that quantum optical nonlinearities are retained. Our findings match up very well with recent broadband plasmonic nanoresonator strong-coupling experiments and will therefore facilitate the control and detection of single-photon nonlinearities at ambient conditions.
The regime of strong light-matter coupling is typically associated with weak excitation. With current realizations of cavity-QED systems, strong coupling may persevere even at elevated excitation levels sufficient to cross the threshold to lasing. In the presence of stimulated emission, the vacuum-Rabi doublet in the emission spectrum is modified and the established criterion for strong coupling no longer applies. We provide a generalized criterion for strong coupling and the corresponding emission spectrum, which includes the influence of higher Jaynes-Cummings states. The applicability is demonstrated in a theory-experiment comparison of a few-emitter quantum-dot--micropillar laser as a particular realization of the driven dissipative Jaynes-Cummings model. Furthermore, we address the question if and for which parameters true single-emitter lasing can be achieved, and provide evidence for the coexistence of strong coupling and lasing in our system in the presence of background emitter contributions.
Controlling absorption and emission of organic molecules is crucial for efficient light-emitting diodes, organic solar cells and single-molecule spectroscopy. Here, a new molecular absorption is activated inside a gold plasmonic nanocavity, and found to break selection rules via spin-orbit coupling. Photoluminescence excitation scans reveal absorption from a normally spin-forbidden singlet to triplet state transition, while drastically enhancing the emission rate by several thousand fold. The experimental results are supported by density functional theory, revealing the manipulation of molecular absorption by nearby metallic gold atoms.
Photonic nanocavities are a key component in many applications because of their capability of trapping and storing photons and enhancing interactions of light with various functional materials and structures. The maximal number of photons that can be stored in silicon photonic cavities is limited by the free-carrier and thermo-optic effects at room temperature. To reduce such effects, we performed the first experimental study of optical nonlinearities in ultrahigh-Q silicon disk nanocavities at cryogenic temperatures in a superfluid helium environment. At elevated input power, the cavity transmission spectra exhibit distinct blue-shifted bistability behavior when temperature crosses the liquid helium lambda point. At even lower temperatures, the spectra restore to symmetric Lorentzian shapes. Under this condition, we obtain a large stored intracavity photon number of about 40,000, which is limited ultimately by the local helium phase transition. These new discoveries are explained by theoretical calculations and numerical simulations.
The surprising recent observation of highly emissive triplet-states in lead halide perovskites accounts for their orders-of-magnitude brighter optical signals and high quantum efficiencies compared to other semiconductors. This makes them attractive for future optoelectronic applications, especially in bright low-threshold nano-lasers. Whilst non-resonantly pumped lasing from all-inorganic lead-halide perovskites is now well-established as an attractive pathway to scalable low-power laser sources for nano-optoelectronics, here we showcase a resonant optical pumping scheme on a fast triplet-state in CsPbBr3 nanocrystals. The scheme allows us to realize a polarized triplet-laser source that dramatically enhances the coherent signal by one order of magnitude whilst suppressing non-coherent contributions. The result is a source with highly attractive technological characteristics including a bright and polarized signal, and a high stimulated-to-spontaneous emission signal contrast that can be filtered to enhance spectral purity. The emission is generated by pumping selectively on a weakly-confined excitonic state with a Bohr radius ~10 nm in the nanocrystals. The exciton fine-structure is revealed by the energy-splitting resulting from confinement in nanocrystals with tetragonal symmetry. We use a linear polarizer to resolve two-fold non-degenerate sub-levels in the triplet exciton and use photoluminescence excitation spectroscopy to determine the energy of the state before pumping it resonantly.