Do you want to publish a course? Click here

Multi-Task Learning in Utterance-Level and Segmental-Level Spoof Detection

127   0   0.0 ( 0 )
 Added by Lin Zhang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In this paper, we provide a series of multi-tasking benchmarks for simultaneously detecting spoofing at the segmental and utterance levels in the PartialSpoof database. First, we propose the SELCNN network, which inserts squeeze-and-excitation (SE) blocks into a light convolutional neural network (LCNN) to enhance the capacity of hidden feature selection. Then, we implement multi-task learning (MTL) frameworks with SELCNN followed by bidirectional long short-term memory (Bi-LSTM) as the basic model. We discuss MTL in PartialSpoof in terms of architecture (uni-branch/multi-branch) and training strategies (from-scratch/warm-up) step-by-step. Experiments show that the multi-task model performs relatively better than single-task models. Also, in MTL, a binary-branch architecture more adequately utilizes information from two levels than a uni-branch model. For the binary-branch architecture, fine-tuning a warm-up model works better than training from scratch. Models can handle both segment-level and utterance-level predictions simultaneously overall under a binary-branch multi-task architecture. Furthermore, the multi-task model trained by fine-tuning a segmental warm-up model performs relatively better at both levels except on the evaluation set for segmental detection. Segmental detection should be explored further.

rate research

Read More

In far-field speaker verification, the performance of speaker embeddings is susceptible to degradation when there is a mismatch between the conditions of enrollment and test speech. To solve this problem, we propose the feature-level and instance-level transfer learning in the teacher-student framework to learn a domain-invariant embedding space. For the feature-level knowledge transfer, we develop the contrastive loss to transfer knowledge from teacher model to student model, which can not only decrease the intra-class distance, but also enlarge the inter-class distance. Moreover, we propose the instance-level pairwise distance transfer method to force the student model to preserve pairwise instances distance from the well optimized embedding space of the teacher model. On FFSVC 2020 evaluation set, our EER on Full-eval trials is relatively reduced by 13.9% compared with the fusion system result on Partial-eval trials of Task2. On Task1, compared with the winners DenseNet result on Partial-eval trials, our minDCF on Full-eval trials is relatively reduced by 6.3%. On Task3, the EER and minDCF of our proposed method on Full-eval trials are very close to the result of the fusion system on Partial-eval trials. Our results also outperform other competitive domain adaptation methods.
We present a learning-based approach for generating binaural audio from mono audio using multi-task learning. Our formulation leverages additional information from two related tasks: the binaural audio generation task and the flipped audio classification task. Our learning model extracts spatialization features from the visual and audio input, predicts the left and right audio channels, and judges whether the left and right channels are flipped. First, we extract visual features using ResNet from the video frames. Next, we perform binaural audio generation and flipped audio classification using separate subnetworks based on visual features. Our learning method optimizes the overall loss based on the weighted sum of the losses of the two tasks. We train and evaluate our model on the FAIR-Play dataset and the YouTube-ASMR dataset. We perform quantitative and qualitative evaluations to demonstrate the benefits of our approach over prior techniques.
76 - Chenpeng Du , Kai Yu 2021
Generating natural speech with diverse and smooth prosody pattern is a challenging task. Although random sampling with phone-level prosody distribution has been investigated to generate different prosody patterns, the diversity of the generated speech is still very limited and far from what can be achieved by human. This is largely due to the use of uni-modal distribution, such as single Gaussian, in the prior works of phone-level prosody modelling. In this work, we propose a novel approach that models phone-level prosodies with a GMM-based mixture density network and then extend it for multi-speaker TTS using speaker adaptation transforms of Gaussian means and variances. Furthermore, we show that we can clone the prosodies from a reference speech by sampling prosodies from the Gaussian components that produce the reference prosodies. Our experiments on LJSpeech and LibriTTS dataset show that the proposed GMM-based method not only achieves significantly better diversity than using a single Gaussian in both single-speaker and multi-speaker TTS, but also provides better naturalness. The prosody cloning experiments demonstrate that the prosody similarity of the proposed GMM-based method is comparable to recent proposed fine-grained VAE while the target speaker similarity is better.
92 - Yuxin Huang , Liwei Lin , Shuo Ma 2020
In this paper, we describe in detail our systems for DCASE 2020 Task 4. The systems are based on the 1st-place system of DCASE 2019 Task 4, which adopts weakly-supervised framework with an attention-based embedding-level pooling module and a semi-supervised learning approach named guided learning. This year, we incorporate multi-branch learning (MBL) into the original system to further improve its performance. MBL uses different branches with different pooling strategies (including instance-level and embedding-level strategies) and different pooling modules (including attention pooling, global max pooling or global average pooling modules), which share the same feature encoder of the model. Therefore, multiple branches pursuing different purposes and focusing on different characteristics of the data can help the feature encoder model the feature space better and avoid over-fitting. To better exploit the strongly-labeled synthetic data, inspired by multi-task learning, we also employ a sound event detection branch. To combine sound separation (SS) with sound event detection (SED), we fuse the results of SED systems with SS-SED systems which are trained using separated sound output by an SS system. The experimental results prove that MBL can improve the model performance and using SS has great potential to improve the performance of SED ensemble system.
In this work, we propose a classifier for distinguishing device-directed queries from background speech in the context of interactions with voice assistants. Applications include rejection of false wake-ups or unintended interactions as well as enabling wake-word free follow-up queries. Consider the example interaction: $Computer,~play~music, Computer,~reduce~the~volume$. In this interaction, the user needs to repeat the wake-word ($Computer$) for the second query. To allow for more natural interactions, the device could immediately re-enter listening state after the first query (without wake-word repetition) and accept or reject a potential follow-up as device-directed or background speech. The proposed model consists of two long short-term memory (LSTM) neural networks trained on acoustic features and automatic speech recognition (ASR) 1-best hypotheses, respectively. A feed-forward deep neural network (DNN) is then trained to combine the acoustic and 1-best embeddings, derived from the LSTMs, with features from the ASR decoder. Experimental results show that ASR decoder, acoustic embeddings, and 1-best embeddings yield an equal-error-rate (EER) of $9.3~%$, $10.9~%$ and $20.1~%$, respectively. Combination of the features resulted in a $44~%$ relative improvement and a final EER of $5.2~%$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا