Do you want to publish a course? Click here

Parity-dependent shot noise and spin-flip relaxation process in a hybrid superconductor-nanowire quantum dot

75   0   0.0 ( 0 )
 Added by Keiko Takase
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report shot noise measurements for a quantum dot formed in an InAs nanowire suspended between superconducting electrodes. We find a clear alternation for the shot noise value in the Coulomb blockade regime between even and odd electron occupation in the dot, indicating that super-Poissonian (Poissonian) shot noise with the Fano factor reaching around 2 (1) occurs for even (odd) parity. With increasing magnetic field, the parity effect disappears and all the regimes show the Fano factor of around 1. The whole observation in our experiments quantitatively agrees with simulation obtained from full-counting statistics of cotunneling including spin-flip relaxation process, which corresponds to modelling electron motion in a quantum dot with strong spin-orbit interaction.

rate research

Read More

130 - Zhi-Hai Liu , Rui Li 2018
We study the impacts of the magnetic field direction on the spin-manipulation and the spin-relaxation in a one-dimensional quantum dot with strong spin-orbit coupling. The energy spectrum and the corresponding eigenfunctions in the quantum dot are obtained exactly. We find that no matter how large the spin-orbit coupling is, the electric-dipole spin transition rate as a function of the magnetic field direction always has a $pi$ periodicity. However, the phonon-induced spin relaxation rate as a function of the magnetic field direction has a $pi$ periodicity only in the weak spin-orbit coupling regime, and the periodicity is prolonged to $2pi$ in the strong spin-orbit coupling regime.
93 - Hui Pan , Tsung-Han Lin , 2005
We investigate the spin-flip effects on the Andreev bound states and the supercurrent in a superconductor/quantum-dot/superconductor system theoretically. The spin-flip scattering in the quantum dot can reverse the supercurrent flowing through the system, and one $pi$-junction transition occurs. By controlling the energy level of quantum dot, the supercurrent is reversed back and another $pi$-junction transition appears. The different influences of the spin-flip scattering and the intradot energy level on the supercurrent are interpreted in the picture of Andreev bound states.
We investigate the triplet-singlet relaxation in a double quantum dot defined by top-gates in an InAs nanowire. In the Pauli spin blockade regime, the leakage current can be mainly attributed to spin relaxation. While at weak and strong inter-dot coupling relaxation is dominated by two individual mechanisms, the relaxation is strongly reduced at intermediate coupling and finite magnetic field. In addition we observe a charateristic bistability of the spin-non conserving current as a function of magnetic field. We propose a model where these features are explained by the polarization of nuclear spins enabled by the interplay between hyperfine and spin-orbit mediated relaxation.
We report reproducible fabrication of InP-InAsP nanowire light emitting diodes in which electron-hole recombination is restricted to a quantum-dot-sized InAsP section. The nanowire geometry naturally self-aligns the quantum dot with the n-InP and p-InP ends of the wire, making these devices promising candidates for electrically-driven quantum optics experiments. We have investigated the operation of these nano-LEDs with a consistent series of experiments at room temperature and at 10 K, demonstrating the potential of this system for single photon applications.
Electron states in a inhomogeneous Ge/Si quantum dot array with groups of closely spaced quantum dots were studied by conventional continuous wave ($cw$) ESR and spin-echo methods. We find that the existence of quantum dot groups allows to increase the spin relaxation time in the system. Created structures allow us to change an effective localization radius of electrons by external magnetic field. With the localization radius close to the size of a quantum dot group, we obtain fourfold increasing spin relaxation time $T_1$, as compared to conventional homogeneous quantum dot arrays. This effect is attributed to averaging of local magnetic fields related to nuclear spins $^{29}$Si and stabilization of $S_z$-polarization during electron back-and-forth motion within a quantum dot group.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا