No Arabic abstract
We investigate the influence of relativistic nondipole effects on the photoelectron spectra of argon, particularly in the low kinetic energy region (0 eV - 5 eV). In our experiment, we use intense linearly polarised 800 nm laser pulse to ionise Ar from a jet and we record photoelectron energy and momentum distributions using a reaction microscope (REMI). Our measurements show that nondipole effect can cause an energy-dependent asymmetry along the laser propagation direction in the photoelectron energy and momentum spectra. Model simulation based on time-dependent Dirac equation (TDDE) can reproduce our measurement results. The electron trajectory analysis based on classical model reveals that the photoelectron which obtains negative momentum shift along laser propagation direction is caused by the interplay between the Lorenz force induced radiation pressure during its free propagation in continuum and re-scattering by Coulomb potential of the parent ion when it is driven back by the laser field.
Strong-field ionization of atoms by circularly polarized femtosecond laser pulses produces a donut-shaped electron momentum distribution. Within the dipole approximation this distribution is symmetric with respect to the polarization plane. The magnetic component of the light field is known to shift this distribution forward. Here, we show that this magnetic non-dipole effect is not the only non-dipole effect in strong-field ionization. We find that an electric non-dipole effect arises that is due to the position dependence of the electric field and which can be understood in analogy to the Doppler effect. This electric non-dipole effect manifests as an increase of the radius of the donut-shaped photoelectron momentum distribution for forward-directed momenta and as a decrease of this radius for backwards-directed electrons. We present experimental data showing this fingerprint of the electric non-dipole effect and compare our findings with a classical model and quantum calculations.
The nondipole under-the-barrier dynamics of the electron during strong-field tunneling ionization is investigated, examining the role of the Coulomb field of the atomic core. The common analysis in the strong field approximation is consequently generalised to include the leading light-front non-dipole Coulomb corrections and demonstrates the counter-intuitive impact of the sub-barrier Coulomb field. Despite its attractive nature, the sub-barrier Coulomb field increases the photoelectron nondipole momentum shift along the laser propagation direction, involving a strong dependence on the laser field. The scaling of the effect with respect to the principal quantum number and angular momentum of the bound state is found. With an improved light-front classical Monte Carlo model, we disentangle sub-barrier and continuum Coulomb effects in the nondipole regime. We demonstrate that the signature of Coulomb induced sub-barrier effects can be identified in the asymptotic photoelectron momentum distribution with state-of-the-art experimental techniques of mid-infrared lasers.
We perform a phase-space analysis of strong-field enhanced ionisation in molecules, with emphasis on quantum-interference effects. Using Wigner quasi-probability distributions and the quantum Liouville equation, we show that the momentum gates reported in a previous publication [N. Takemoto and A. Becker, Phys. Rev. A textbf{84}, 023401 (2011)] may occur for static driving fields, and even for no external field at all. Their primary cause is an interference-induced bridging mechanism that occurs if both wells in the molecule are populated. In the phase-space regions for which quantum bridges occur, the Wigner functions perform a clockwise rotation whose period is intrinsic to the molecule. This evolution is essentially non-classical and non-adiabatic, as it does not follow equienergy curves or field gradients. Quasi-probability transfer via quantum bridges is favoured if the electrons initial state is either spatially delocalised, or situated at the upfield molecular well. Enhanced ionisation results from the interplay of this cyclic motion, adiabatic tunnel ionisation and population trapping. Optimal conditions require minimising population trapping and using the bridging mechanism to feed into ionisation pathways along the field gradient.
The spin polarization of electrons from multiphoton ionization of Xe by 395 nm circularly polarized laser pulses at $6cdot10^{13}$ W/cm$^2$ has been measured. At this photon energy of 3.14 eV the above threshold ionization peaks connected to Xe$^+$ ions in the ground state ($J=3/2$, ionization potential $I_p=12.1$ eV) and the first exicted state ($J=1/2$, $I_p=13.4$ eV) are clearly separated in the electron energy distribution. These two combs of ATI peaks show opposite spin polarizations. The magnitude of the spin polarization is a factor of two higher for the $J=1/2$ than for the $J=3/2$ final ionic state. In turn the data show that the ionization probability is strongly dependent on the sign of the magnetic quantum number.
Observation of internal quantum dynamics relies on correlations between the system being observed and the measurement apparatus. We propose using the center-of-mass (c.m.) degrees of freedom of atoms and molecules as a built-in monitoring device for observing their internal dynamics in non-perturbative laser fields. We illustrate the idea on the simplest model system - the hydrogen atom in an intense, tightly-focused infrared laser beam. To this end, we develop a numerically-tractable, quantum-mechanical treatment of correlations between internal and c.m. dynamics. We show that the transverse momentum records the time excited states experience the field, allowing femtosecond reconstruction of the strong-field excitation process. The ground state becomes weak-field seeking, an unambiguous and long sought-for signature of the Kramers-Henneberger regime.