Ce-site dilution in the ferromagnetic Kondo lattice CeRh$_6$Ge$_4$


Abstract in English

The heavy fermion ferromagnet CeRh$_6$Ge$_4$ is the first example of a clean stoichiometric system where the ferromagnetic transition can be continuously suppressed by hydrostatic pressure to a quantum critical point. In order to reveal the outcome when the magnetic lattice of CeRh$_6$Ge$_4$ is diluted with non-magnetic atoms, this study reports comprehensive measurements of the physical properties of both single crystal and polycrystalline samples of La$_x$Ce$_{1-x}$Rh$_6$Ge$_4$. With increasing $x$, the Curie temperature decreases, and no transition is observed for $x$ $>$ 0.25, while the system evolves from exhibiting coherent Kondo lattice behaviors at low $x$, to the Kondo impurity scenario at large $x$. Moreover, non-Fermi liquid behavior (NFL) is observed over a wide doping range, which agrees well with the disordered Kondo model for 0.52 $leq$ $x$ $leq$ 0.66, while strange metal behavior is revealed in the vicinity of $x_c$ = 0.26.

Download