Enhanced trion emission in monolayer MoSe2 by constructing a type-I van der Waals heterostructure


Abstract in English

Trions, quasi-particles consisting of two electrons combined with one hole or of two holes with one electron, have recently been observed in transition metal dichalcogenides (TMDCs) and drawn increasing attention due to potential applications of these materials in light-emitting diodes, valleytronic devices as well as for being a testbed for understanding many-body phenomena. Therefore, it is important to enhance the trion emission and its stability. In this study, we construct a MoSe2/FePS3 van der Waals heterostructure (vdWH) with type-I band alignment, which allows for carriers injection from FePS3 to MoSe2. At low temperatures, the neutral exciton (X0) emission in this vdWH is almost completely suppressed. The ITrion/Ix0 intensity ratio increases from 0.44 in a single MoSe2 monolayer to 20 in this heterostructure with the trion charging state changing from negative in the monolayer to positive in the heterostructure. The optical pumping with circularly polarized light shows a 14% polarization for the trion emission in MoSe2/FePS3. Moreover, forming such type-I vdWH also gives rise to a 20-fold enhancement of the room temperature photoluminescence from monolayer MoSe2. Our results demonstrate a novel approach to convert excitons to trions in monolayer 2D TMDCs via interlayer doping effect using type-I band alignment in vdWH.

Download