No Arabic abstract
Formation of primordial black holes from inflationary fluctuations is accompanied by a scalar induced gravitational wave background. We perform a Bayesian search of such background in the data from Advanced LIGO and Virgos first, second and third observing runs, parametrizing the peak in the curvature power spectrum by a log-normal distribution. The search shows no evidence for such a background. We place 95% confidence level upper limits on the integrated power of the curvature power spectrum peak which, for a narrow width, reaches down to $0.02$ at $10^{17},{rm Mpc}^{-1}$. The resulting constraints are stronger than those arising from BBN or CMB observations. In addition, we find that LIGO and Virgo, at its design sensitivity, and the Einstein Telescope can compete with the constraints related to the abundance of the formed primordial black holes.
Primordial density perturbations in the radiation-dominated era of the early Universe are expected to generate stochastic gravitational waves (GWs) due to nonlinear mode coupling. In this emph{Letter}, we report on a search for such a stochastic GW background in the data of the two LIGO detectors during their second observing run (O2). We focus on the primordial perturbations in the range of comoving wavenumbers $10^{16}-10^{18}~{rm Mpc}^{-1}$ for which the stochastic background falls within the detectors sensitivity band. We do not find any conclusive evidence of this stochastic signal in the data, and thus place the very first GW-based constraints on the amplitude of the power spectrum at these scales. We assume a lognormal shape for the power spectrum and Gaussian statistics for the primordial perturbations, and vary the width of the power spectrum to cover both narrow and broad spectra. Derived upper limits ($95%$) on the amplitude of the power spectrum are $0.01-0.1$. As a byproduct, we are able to infer upper limits on the fraction of the Universes mass in ultralight primordial black holes ($M_mathrm{PBH} simeq 10^{-20}-10^{-19}M_{odot}$) at their formation time to be $lesssim 10^{-25}$.
This paper presents the results of a search for generic short-duration gravitational-wave transients in data from the third observing run of Advanced LIGO and Advanced Virgo. Transients with durations of milliseconds to a few seconds in the 24--4096 Hz frequency band are targeted by the search, with no assumptions made regarding the incoming signal direction, polarization or morphology. Gravitational waves from compact binary coalescences that have been identified by other targeted analyses are detected, but no statistically significant evidence for other gravitational wave bursts is found. Sensitivities to a variety of signals are presented. These include updated upper limits on the source rate-density as a function of the characteristic frequency of the signal, which are roughly an order of magnitude better than previous upper limits. This search is sensitive to sources radiating as little as $sim$10$^{-10} M_{odot} c^2$ in gravitational waves at $sim$70 Hz from a distance of 10~kpc, with 50% detection efficiency at a false alarm rate of one per century. The sensitivity of this search to two plausible astrophysical sources is estimated: neutron star f-modes, which may be excited by pulsar glitches, as well as selected core-collapse supernova models.
After the detection of gravitational waves from compact binary coalescences, the search for transient gravitational-wave signals with less well-defined waveforms for which matched filtering is not well-suited is one of the frontiers for gravitational-wave astronomy. Broadly classified into short $ lesssim 1~$,s and long $ gtrsim 1~$,s duration signals, these signals are expected from a variety of astrophysical processes, including non-axisymmetric deformations in magnetars or eccentric binary black hole coalescences. In this work, we present a search for long-duration gravitational-wave transients from Advanced LIGO and Advanced Virgos third observing run from April 2019 to March 2020. For this search, we use minimal assumptions for the sky location, event time, waveform morphology, and duration of the source. The search covers the range of $2~text{--}~ 500$~s in duration and a frequency band of $24 - 2048$ Hz. We find no significant triggers within this parameter space; we report sensitivity limits on the signal strength of gravitational waves characterized by the root-sum-square amplitude $h_{mathrm{rss}}$ as a function of waveform morphology. These $h_{mathrm{rss}}$ limits improve upon the results from the second observing run by an average factor of 1.8.
We search for signatures of gravitational lensing in the gravitational-wave signals from compact binary coalescences detected by Advanced LIGO and Advanced Virgo during O3a, the first half of their third observing run. We study: 1) the expected rate of lensing at current detector sensitivity and the implications of a non-observation of strong lensing or a stochastic gravitational-wave background on the merger-rate density at high redshift; 2) how the interpretation of individual high-mass events would change if they were found to be lensed; 3) the possibility of multiple images due to strong lensing by galaxies or galaxy clusters; and 4) possible wave-optics effects due to point-mass microlenses. Several pairs of signals in the multiple-image analysis show similar parameters and, in this sense, are nominally consistent with the strong lensing hypothesis. However, taking into account population priors, selection effects, and the prior odds against lensing, these events do not provide sufficient evidence for lensing. Overall, we find no compelling evidence for lensing in the observed gravitational-wave signals from any of these analyses.
We present results from a search for gravitational-wave bursts in the data collected by the LIGO and Virgo detectors between July 7, 2009 and October 20, 2010: data are analyzed when at least two of the three LIGO-Virgo detectors are in coincident operation, with a total observation time of 207 days. The analysis searches for transients of duration < 1 s over the frequency band 64-5000 Hz, without other assumptions on the signal waveform, polarization, direction or occurrence time. All identified events are consistent with the expected accidental background. We set frequentist upper limits on the rate of gravitational-wave bursts by combining this search with the previous LIGO-Virgo search on the data collected between November 2005 and October 2007. The upper limit on the rate of strong gravitational-wave bursts at the Earth is 1.3 events per year at 90% confidence. We also present upper limits on source rate density per year and Mpc^3 for sample populations of standard-candle sources. As in the previous joint run, typical sensitivities of the search in terms of the root-sum-squared strain amplitude for these waveforms lie in the range 5 10^-22 Hz^-1/2 to 1 10^-20 Hz^-1/2. The combination of the two joint runs entails the most sensitive all-sky search for generic gravitational-wave bursts and synthesizes the results achieved by the initial generation of interferometric detectors.