Do you want to publish a course? Click here

Multiple Stokes I inversions to infer magnetic fields in the spectral range around Cr I 5782 r{A}

470   0   0.0 ( 0 )
 Added by Christoph Kuckein
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

No English abstract



rate research

Read More

We investigate the dynamics and magnetic properties of the plasma, such as line-of-sight velocity (LOS), optical depth, vertical and horizontal magnetic fields, belonging to an erupted solar filament. The filament eruption was observed with the GREGOR Infrared Spectrograph (GRIS) at the 1.5-meter GREGOR telescope on 2016 July 3. Three consecutive full-Stokes slit-spectropolarimetric scans in the He I 10830 r{A} spectral range were acquired. The Stokes I profiles were classified using the machine learning k-means algorithm and then inverted with different initial conditions using the HAZEL code. The erupting-filament material presents the following physical conditions: (1) ubiquitous upward motions with peak LOS velocities of ~73 km/s; (2) predominant large horizontal components of the magnetic field, on average, in the range of 173-254 G, whereas the vertical components of the fields are much lower, on average between 39-58 G; (3) optical depths in the range of 0.7-1.1. The average azimuth orientation of the field lines between two consecutive raster scans (<2.5 minutes) remained constant. The analyzed filament eruption belonged to the fast rising phase, with total velocities of about 124 km/s. The orientation of the magnetic field lines does not change from one raster scan to the other, indicating that the untwisting phase has not started yet. The untwisting seems to start about 15 min after the beginning of the filament eruption.
As one of the solutions to the Dec-POMDP problem, the value decomposition method has achieved good results recently. However, most value decomposition methods require the global state during training, but this is not feasible in some scenarios where the global state cannot be obtained. Therefore, we propose a novel value decomposition framework, named State Inference for value DEcomposition (SIDE), which eliminates the need to know the true state by simultaneously seeking solutions to the two problems of optimal control and state inference. SIDE can be extended to any value decomposition method, as well as other types of multi-agent algorithms in the case of Dec-POMDP. Based on the performance results of different algorithms in Starcraft II micromanagement tasks, we verified that SIDE can construct the current state that contributes to the reinforcement learning process based on past local observations.
The B-W method is used to determine the distance of Cepheids and consists in combining the angular size variations of the star, as derived from infrared surface-brightness relations or interferometry, with its linear size variation, as deduced from visible spectroscopy using the projection factor. While many Cepheids have been intensively observed by infrared beam combiners, only a few have been observed in the visible. This paper is part of a project to observe Cepheids in the visible with interferometry as a counterpart to infrared observations already in hand. Observations of delta Cep itself were secured with the VEGA/CHARA instrument over the full pulsation cycle of the star. These visible interferometric data are consistent in first approximation with a quasi-hydrostatic model of pulsation surrounded by a static circumstellar environment (CSE) with a size of theta_cse=8.9 +/- 3.0 mas and a relative flux contribution of f_cse=0.07+/-0.01. A model of visible nebula (a background source filling the field of view of the interferometer) with the same relative flux contribution is also consistent with our data at small spatial frequencies. However, in both cases, we find discrepancies in the squared visibilities at high spatial frequencies (maximum 2sigma) with two different regimes over the pulsation cycle of the star, phi=0.0-0.8 and phi=0.8-1.0. We provide several hypotheses to explain these discrepancies, but more observations and theoretical investigations are necessary before a firm conclusion can be drawn. For the first time we have been able to detect in the visible domain a resolved structure around delta~Cep. We have also shown that a simple model cannot explain the observations, and more work will be necessary in the future, both on observations and modelling.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا